Lösung 2.2:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
It is simpler to investigate the integral if we write it as | It is simpler to investigate the integral if we write it as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int \ln x\cdot\frac{1}{x}\,dx\,,</math>}} |
The derivative of <math>\ln x</math> is <math>1/x</math>, so if we choose <math>u = \ln x</math>, the integral can be expressed as | The derivative of <math>\ln x</math> is <math>1/x</math>, so if we choose <math>u = \ln x</math>, the integral can be expressed as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int u\cdot u'\,dx\,\textrm{.}</math>}} |
Thus, it seems that <math>u=\ln x</math> is a useful substitution, | Thus, it seems that <math>u=\ln x</math> is a useful substitution, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int \ln x\cdot\frac{1}{x}\,dx | \int \ln x\cdot\frac{1}{x}\,dx | ||
&= \left\{\begin{align} | &= \left\{\begin{align} |
Version vom 13:02, 10. Mär. 2009
It is simpler to investigate the integral if we write it as
\displaystyle \int \ln x\cdot\frac{1}{x}\,dx\,, |
The derivative of \displaystyle \ln x is \displaystyle 1/x, so if we choose \displaystyle u = \ln x, the integral can be expressed as
\displaystyle \int u\cdot u'\,dx\,\textrm{.} |
Thus, it seems that \displaystyle u=\ln x is a useful substitution,
\displaystyle \begin{align}
\int \ln x\cdot\frac{1}{x}\,dx &= \left\{\begin{align} u &= \ln x\\[5pt] du &= (\ln x)'\,dx = (1/x)\,dx \end{align}\right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}(\ln x)^2 + C\,\textrm{.} \end{align} |