Lösung 3.4:1e
Aus Online Mathematik Brückenkurs 2
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | Imagine for a moment taking away all the terms in the numerator apart from | + | Imagine for a moment taking away all the terms in the numerator apart from <math>x^3</math>. If we are to make <math>x^3</math> divisible by the denominator |
| - | <math>x^ | + | <math>x^2+3x+1</math>, we need to add and subtract <math>3x^2+x</math> in order to obtain the expression <math>x^3+3x^2+x=x(x^2+3x+1)</math>, |
| - | <math>x^ | + | |
| - | divisible by the denominator | + | |
| - | <math>x^ | + | |
| - | <math>3x^ | + | |
| - | in order to obtain the expression | + | |
| - | <math>x^ | + | |
| + | {{Displayed math||<math>\begin{align} | ||
| + | \frac{x^3+2x^2+1}{x^2+3x+1} | ||
| + | &= \frac{x^3\bbox[#FFEEAA;,1.5pt]{{}+3x^2+x-3x^2-x}+2x^2+1}{x^2+3x+1}\\[5pt] | ||
| + | &= \frac{x^3+3x^2+x}{x^2+3x+1} + \frac{-3x^2-x+2x^2+1}{x^2+3x+1}\\[5pt] | ||
| + | &= \frac{x(x^2+3x+1)}{x^2+3x+1} + \frac{-x^2-x+1}{x^2+3x+1}\\[5pt] | ||
| + | &= x+\frac{-x^2-x+1}{x^2+3x+1}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| - | <math> | + | Now, we carry out the same procedure with the new quotient. To the term <math>-x^2</math>, we add and subtract <math>-3x-1</math> and obtain |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | + | x + \frac{-x^2-x+1}{x^2+3x+1} | |
| - | + | &= x + \frac{-x^2\bbox[#FFEEAA;,1.5pt]{{}-3x-1+3x+1}-x+1}{x^2+3x+1}\\[5pt] | |
| - | + | &= x + \frac{-x^2-3x-1}{x^2+3x+1} + \frac{3x+1-x+1}{x^2+3x+1}\\[5pt] | |
| - | + | &= x - 1 + \frac{2x+2}{x^2+3x+1}\,\textrm{.} | |
| - | + | \end{align}</math>}} | |
| - | + | ||
| - | <math>\begin{align} | + | |
| - | + | ||
| - | & =x+\frac{-x^ | + | |
| - | & =x-1+\frac{2x+2}{x^ | + | |
| - | \end{align}</math> | + | |
Version vom 12:40, 31. Okt. 2008
Imagine for a moment taking away all the terms in the numerator apart from \displaystyle x^3. If we are to make \displaystyle x^3 divisible by the denominator \displaystyle x^2+3x+1, we need to add and subtract \displaystyle 3x^2+x in order to obtain the expression \displaystyle x^3+3x^2+x=x(x^2+3x+1),
| \displaystyle \begin{align}
\frac{x^3+2x^2+1}{x^2+3x+1} &= \frac{x^3\bbox[#FFEEAA;,1.5pt]{{}+3x^2+x-3x^2-x}+2x^2+1}{x^2+3x+1}\\[5pt] &= \frac{x^3+3x^2+x}{x^2+3x+1} + \frac{-3x^2-x+2x^2+1}{x^2+3x+1}\\[5pt] &= \frac{x(x^2+3x+1)}{x^2+3x+1} + \frac{-x^2-x+1}{x^2+3x+1}\\[5pt] &= x+\frac{-x^2-x+1}{x^2+3x+1}\,\textrm{.} \end{align} |
Now, we carry out the same procedure with the new quotient. To the term \displaystyle -x^2, we add and subtract \displaystyle -3x-1 and obtain
| \displaystyle \begin{align}
x + \frac{-x^2-x+1}{x^2+3x+1} &= x + \frac{-x^2\bbox[#FFEEAA;,1.5pt]{{}-3x-1+3x+1}-x+1}{x^2+3x+1}\\[5pt] &= x + \frac{-x^2-3x-1}{x^2+3x+1} + \frac{3x+1-x+1}{x^2+3x+1}\\[5pt] &= x - 1 + \frac{2x+2}{x^2+3x+1}\,\textrm{.} \end{align} |
