Lösung 3.3:5d
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | Let us first divide both sides by | + | Let us first divide both sides by <math>4+i</math>, so that the coefficient in front of <math>z^2</math> becomes <math>1</math>, |
- | <math>4+i</math>, so that the coefficient in front of | + | |
- | <math>z^ | + | |
- | becomes | + | |
- | <math> | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>z^2 + \frac{1-21i}{4+i}z = \frac{17}{4+i}\,\textrm{.}</math>}} | ||
The two complex quotients become | The two complex quotients become | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{1-21i}{4+i} |
- | & \frac{ | + | &= \frac{(1-21i)(4-i)}{(4+i)(4-i)} |
- | & =\frac{-17-85i}{16+1}=\frac{-17-85i}{17}=-1-5i \\ | + | = \frac{4-i-84i+21i^2}{4^2-i^2}\\[5pt] |
- | \ | + | &= \frac{-17-85i}{16+1} |
- | + | = \frac{-17-85i}{17} | |
- | + | = -1-5i\,,\\[10pt] | |
- | + | \frac{17}{4+i} | |
- | + | &= \frac{17(4-i)}{(4+i)(4-i)} | |
- | + | = \frac{17(4-i)}{4^2-i^2}\\[5pt] | |
- | & =\frac{17 | + | &= \frac{17(4-i)}{17} |
- | \end{align}</math> | + | = 4-i\,\textrm{.} |
- | + | \end{align}</math>}} | |
Thus, the equation becomes | Thus, the equation becomes | ||
+ | {{Displayed math||<math>z^2 - (1+5i)z = 4-i\,\textrm{.}</math>}} | ||
- | + | Now, we complete the square of the left-hand side, | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1+5i}{2}\Bigr)^2 &= 4-i\,,\\[5pt] | ||
+ | \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1}{4}+\frac{5}{2}\,i+\frac{25}{4}i^2 \Bigr) &= 4-i\,,\\[5pt] | ||
+ | \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \frac{1}{4} - \frac{5}{2}i + \frac{25}{4} &= 4-i\,, \\[5pt] | ||
+ | \Bigl(z-\frac{1+5i}{2}\Bigr)^2 &= -2+\frac{3}{2}\,i\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | If we set <math>w=z-\frac{1+5i}{2}</math>, we have a binomial equation in <math>w</math>, | |
+ | {{Displayed math||<math>w^2 = -2+\frac{3}{2}\,i</math>}} | ||
- | + | which we solve by putting <math>w=x+iy</math>, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | which we solve by putting | + | |
- | <math>w=x+iy | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>(x+iy)^2 = -2+\frac{3}{2}\,i</math>}} | ||
or, if the left-hand side is expanded, | or, if the left-hand side is expanded, | ||
- | + | {{Displayed math||<math>x^2-y^2+2xyi = -2+\frac{3}{2}\,i\,\textrm{.}</math>}} | |
- | <math>x^ | + | |
- | + | ||
If we identify the real and imaginary parts on both sides, we get | If we identify the real and imaginary parts on both sides, we get | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | x^2-y^2 &= -2\,,\\[5pt] |
- | + | 2xy &= \frac{3}{2}\,, | |
- | + | \end{align}</math>}} | |
- | \end{align}</math> | + | |
- | + | ||
and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation: | and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation: | ||
- | + | {{Displayed math||<math>x^2 + y^2 = \sqrt{(-2)^2+\bigl(\tfrac{3}{2}\bigr)^2} = \tfrac{5}{2}\,\textrm{.}</math>}} | |
- | <math>x^ | + | |
- | + | ||
Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier. | Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier. | ||
Zeile 82: | Zeile 59: | ||
Together, the three relations constitute the following system of equations: | Together, the three relations constitute the following system of equations: | ||
+ | {{Displayed math||<math>\left\{\begin{align} | ||
+ | x^2-y^2 &= -2\,,\\[5pt] | ||
+ | 2xy &= \frac{3}{2}\,,\\[5pt] | ||
+ | x^2 + y^2 &= \frac{5}{2}\,\textrm{.} | ||
+ | \end{align} \right.</math>}} | ||
- | + | From the first and the third equations, we can relatively easily obtain the values that <math>x</math> and <math>y</math> can take. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | From the first and the third equations, we can relatively easily obtain the values that | + | |
- | <math>x</math> | + | |
- | and | + | |
- | <math>y</math> | + | |
- | can take. | + | |
Add the first and third equations, | Add the first and third equations, | ||
+ | {| align="center" style="padding:10px 0px 10px 0px;" | ||
+ | || | ||
+ | |align="right"|<math>x^2</math> | ||
+ | ||<math>{}-{}</math> | ||
+ | |align="right"|<math>y^2</math> | ||
+ | ||<math>{}={}</math> | ||
+ | |align="right"|<math>-2</math> | ||
+ | |- | ||
+ | |align="left"|<math>+\ \ </math> | ||
+ | |align="right"|<math>x^2</math> | ||
+ | ||<math>{}+{}</math> | ||
+ | ||<math>y^2</math> | ||
+ | ||<math>{}={}</math> | ||
+ | |align="right"|<math>\tfrac{5}{2}</math> | ||
+ | |- | ||
+ | |colspan="6"|<hr> | ||
+ | |- | ||
+ | || | ||
+ | |align="right"|<math>2x^2</math> | ||
+ | || | ||
+ | || | ||
+ | ||<math>{}={}</math> | ||
+ | |align="right"|<math>\tfrac{1}{2}</math> | ||
+ | |} | ||
- | + | which gives that <math>x=\pm \tfrac{1}{2}</math>. | |
- | + | ||
- | which gives that | + | |
- | <math>x=\pm \ | + | |
Then, subtract the first equation from the third equation, | Then, subtract the first equation from the third equation, | ||
+ | {| align="center" style="padding:10px 0px 10px 0px;" | ||
+ | || | ||
+ | |align="right"|<math>x^2</math> | ||
+ | ||<math>{}+{}</math> | ||
+ | |align="right"|<math>y^2</math> | ||
+ | ||<math>{}={}</math> | ||
+ | |align="right"|<math>\tfrac{5}{2}</math> | ||
+ | |- | ||
+ | |align="left"|<math>-\ \ </math> | ||
+ | |align="right"|<math>\bigl(x^2</math> | ||
+ | ||<math>{}-{}</math> | ||
+ | |align="right"|<math>y^2</math> | ||
+ | ||<math>{}={}</math> | ||
+ | |align="right"|<math>-2\rlap{\bigr)}</math> | ||
+ | |- | ||
+ | |colspan="6"|<hr> | ||
+ | |- | ||
+ | || | ||
+ | || | ||
+ | || | ||
+ | |align="right"|<math>2y^2</math> | ||
+ | ||<math>{}={}</math> | ||
+ | |align="right"|<math>\tfrac{9}{2}</math> | ||
+ | |} | ||
- | + | i.e. <math>y=\pm\tfrac{3}{2}</math>. | |
- | + | ||
- | i.e. | + | |
- | <math>y=\pm \ | + | |
This gives four possible combinations, | This gives four possible combinations, | ||
- | + | {{Displayed math||<math>\left\{\begin{align} | |
- | <math>\left\{ \begin{ | + | x &= \tfrac{1}{2}\\[5pt] |
- | x=\ | + | y &= \tfrac{3}{2} |
- | y=\ | + | \end{align}\right. |
- | \end{ | + | \qquad |
- | x=\ | + | \left\{\begin{align} |
- | y=-\ | + | x &= \tfrac{1}{2}\\[5pt] |
- | \end{ | + | y &= -\tfrac{3}{2} |
- | x=-\ | + | \end{align}\right. |
- | y=\ | + | \qquad |
- | \end{ | + | \left\{\begin{align} |
- | x=-\ | + | x &= -\tfrac{1}{2}\\[5pt] |
- | y=-\ | + | y &= \tfrac{3}{2} |
- | \end{ | + | \end{align}\right. |
- | + | \qquad | |
+ | \left\{\begin{align} | ||
+ | x &= -\tfrac{1}{2}\\[5pt] | ||
+ | y &= -\tfrac{3}{2} | ||
+ | \end{align} \right.</math>}} | ||
of which only two also satisfy the second equation. | of which only two also satisfy the second equation. | ||
- | + | {{Displayed math||<math>\left\{\begin{align} | |
- | <math>\left\{ \begin{ | + | x &= \tfrac{1}{2}\\[5pt] |
- | x=\ | + | y &= \tfrac{3}{2} |
- | y=\ | + | \end{align}\right. |
- | \end{ | + | \qquad\text{and}\qquad |
- | x=-\ | + | \left\{\begin{align} |
- | y=-\ | + | x &= -\tfrac{1}{2}\\[5pt] |
- | \end{ | + | y &= -\tfrac{3}{2} |
- | + | \end{align}\right.</math>}} | |
This means that the binomial equation has the two solutions, | This means that the binomial equation has the two solutions, | ||
- | + | {{Displayed math||<math>w=\frac{1}{2}+\frac{3}{2}\,i\qquad</math> and <math>\qquad w=-\frac{1}{2}-\frac{3}{2}\,i\,,</math>}} | |
- | + | ||
- | <math>w=\frac{1}{2}+\frac{3}{2}i</math> | + | |
- | and | + | |
- | <math>w=\frac{1}{ | + | |
- | + | ||
and that the original equation has the solutions | and that the original equation has the solutions | ||
+ | {{Displayed math||<math>z=1+4i\qquad</math> and <math>\qquad z=i</math>}} | ||
- | + | according to the relation <math>w=z-\frac{1+5i}{2}</math>. | |
- | + | ||
- | + | ||
- | + | ||
- | according to the relation | + | |
- | <math>w=z-\frac{1+5i}{2}</math>. | + | |
Finally, we check that the solutions really do satisfy the equation. | Finally, we check that the solutions really do satisfy the equation. | ||
- | |||
- | |||
- | |||
- | <math>\begin{align} | ||
- | & 1+4i:\quad \left( 4+i \right)z^{2}+\left( 1-21i \right)z \\ | ||
- | & =\left( 4+i \right)\left( 1+4i \right)^{2}+\left( 1-21i \right)\left( 1+4i \right) \\ | ||
- | & =\left( 4+i \right)\left( 1+8i+16i^{2} \right)+\left( 1+4i-21i-84i^{2} \right) \\ | ||
- | & =\left( 4+i \right)\left( -15+8i \right)+1-17i+84 \\ | ||
- | & =-60+32i-15i+8i^{2}+1-17i+84 \\ | ||
- | & =-60+32i-15i-8+1-17i+84=17 \\ | ||
- | \end{align}</math> | ||
- | |||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | + | z=1+4i:\quad (4+i)z^2+(1-21i)z | |
- | & = | + | &= (4+i)(1+4i)^2+(1-21i)(1+4i)\\[5pt] |
- | & = | + | &= (4+i)(1+8i+16i^2)+(1+4i-21i-84i^2)\\[5pt] |
- | & =-4-i+i+21=17 \\ | + | &= (4+i)(-15+8i)+1-17i+84\\[5pt] |
+ | &= -60+32i-15i+8i^2+1-17i+84\\[5pt] | ||
+ | &= -60+32i-15i-8+1-17i+84\\[5pt] | ||
+ | &= 17\,,\\[10pt] | ||
+ | z={}\rlap{i:}\phantom{1+4i:}{}\quad (4+i)z^2+(1-21i)z | ||
+ | &= (4+i)i^2 + (1-21i)i\\[5pt] | ||
+ | &= (4+i)(-1)+i-21i^2\\[5pt] | ||
+ | &= -4-i+i+21\\[5pt] | ||
+ | &= 17\,\textrm{.} | ||
\end{align}</math> | \end{align}</math> |
Version vom 11:38, 31. Okt. 2008
Let us first divide both sides by \displaystyle 4+i, so that the coefficient in front of \displaystyle z^2 becomes \displaystyle 1,
\displaystyle z^2 + \frac{1-21i}{4+i}z = \frac{17}{4+i}\,\textrm{.} |
The two complex quotients become
\displaystyle \begin{align}
\frac{1-21i}{4+i} &= \frac{(1-21i)(4-i)}{(4+i)(4-i)} = \frac{4-i-84i+21i^2}{4^2-i^2}\\[5pt] &= \frac{-17-85i}{16+1} = \frac{-17-85i}{17} = -1-5i\,,\\[10pt] \frac{17}{4+i} &= \frac{17(4-i)}{(4+i)(4-i)} = \frac{17(4-i)}{4^2-i^2}\\[5pt] &= \frac{17(4-i)}{17} = 4-i\,\textrm{.} \end{align} |
Thus, the equation becomes
\displaystyle z^2 - (1+5i)z = 4-i\,\textrm{.} |
Now, we complete the square of the left-hand side,
\displaystyle \begin{align}
\Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1+5i}{2}\Bigr)^2 &= 4-i\,,\\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1}{4}+\frac{5}{2}\,i+\frac{25}{4}i^2 \Bigr) &= 4-i\,,\\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \frac{1}{4} - \frac{5}{2}i + \frac{25}{4} &= 4-i\,, \\[5pt] \Bigl(z-\frac{1+5i}{2}\Bigr)^2 &= -2+\frac{3}{2}\,i\,\textrm{.} \end{align} |
If we set \displaystyle w=z-\frac{1+5i}{2}, we have a binomial equation in \displaystyle w,
\displaystyle w^2 = -2+\frac{3}{2}\,i |
which we solve by putting \displaystyle w=x+iy,
\displaystyle (x+iy)^2 = -2+\frac{3}{2}\,i |
or, if the left-hand side is expanded,
\displaystyle x^2-y^2+2xyi = -2+\frac{3}{2}\,i\,\textrm{.} |
If we identify the real and imaginary parts on both sides, we get
\displaystyle \begin{align}
x^2-y^2 &= -2\,,\\[5pt] 2xy &= \frac{3}{2}\,, \end{align} |
and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation:
\displaystyle x^2 + y^2 = \sqrt{(-2)^2+\bigl(\tfrac{3}{2}\bigr)^2} = \tfrac{5}{2}\,\textrm{.} |
Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier.
Together, the three relations constitute the following system of equations:
\displaystyle \left\{\begin{align}
x^2-y^2 &= -2\,,\\[5pt] 2xy &= \frac{3}{2}\,,\\[5pt] x^2 + y^2 &= \frac{5}{2}\,\textrm{.} \end{align} \right. |
From the first and the third equations, we can relatively easily obtain the values that \displaystyle x and \displaystyle y can take.
Add the first and third equations,
\displaystyle x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle -2 | |
\displaystyle +\ \ | \displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \tfrac{5}{2} |
\displaystyle 2x^2 | \displaystyle {}={} | \displaystyle \tfrac{1}{2} |
which gives that \displaystyle x=\pm \tfrac{1}{2}.
Then, subtract the first equation from the third equation,
\displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \tfrac{5}{2} | |
\displaystyle -\ \ | \displaystyle \bigl(x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle -2\rlap{\bigr)} |
\displaystyle 2y^2 | \displaystyle {}={} | \displaystyle \tfrac{9}{2} |
i.e. \displaystyle y=\pm\tfrac{3}{2}.
This gives four possible combinations,
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= \tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align} \right. |
of which only two also satisfy the second equation.
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad\text{and}\qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. |
This means that the binomial equation has the two solutions,
\displaystyle w=\frac{1}{2}+\frac{3}{2}\,i\qquad and \displaystyle \qquad w=-\frac{1}{2}-\frac{3}{2}\,i\,, |
and that the original equation has the solutions
\displaystyle z=1+4i\qquad and \displaystyle \qquad z=i |
according to the relation \displaystyle w=z-\frac{1+5i}{2}.
Finally, we check that the solutions really do satisfy the equation.
\displaystyle \begin{align} z=1+4i:\quad (4+i)z^2+(1-21i)z &= (4+i)(1+4i)^2+(1-21i)(1+4i)\\[5pt] &= (4+i)(1+8i+16i^2)+(1+4i-21i-84i^2)\\[5pt] &= (4+i)(-15+8i)+1-17i+84\\[5pt] &= -60+32i-15i+8i^2+1-17i+84\\[5pt] &= -60+32i-15i-8+1-17i+84\\[5pt] &= 17\,,\\[10pt] z={}\rlap{i:}\phantom{1+4i:}{}\quad (4+i)z^2+(1-21i)z &= (4+i)i^2 + (1-21i)i\\[5pt] &= (4+i)(-1)+i-21i^2\\[5pt] &= -4-i+i+21\\[5pt] &= 17\,\textrm{.} \end{align}