Lösung 3.3:5b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Complete the square of the left-hand side:
+
Complete the square of the left-hand side,
 +
{{Displayed math||<math>\begin{align}
 +
\Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(\frac{2-i}{2}\Bigr)^2+3-i &= 0\,,\\[5pt]
 +
\Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(1-i+\frac{1}{4}i^2\Bigr)+3-i&=0\,,\\[5pt]
 +
\Bigl(z-\frac{2-i}{2}\Bigr)^2-1+i+\frac{1}{4}+3-i&=0\,,\\[5pt]
 +
\Bigl(z-\frac{2-i}{2}\Bigr)^2+\frac{9}{4}&=0\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Taking the square root then gives that the solutions are
-
& \left( z-\frac{2-i}{2} \right)^{2}-\left( \frac{2-i}{2} \right)^{2}+3-i=0 \\
+
-
& \left( z-\frac{2-i}{2} \right)^{2}-\left( 1-i+\frac{1}{4}i^{2} \right)+3-i=0 \\
+
-
& \left( z-\frac{2-i}{2} \right)^{2}-1+i+\frac{1}{4}+3-i=0 \\
+
-
& \left( z-\frac{2-i}{2} \right)^{2}+\frac{9}{4}=0 \\
+
-
& \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
Taking the root then gives that the solutions are
+
-
 
+
-
 
+
-
<math>z-\frac{2-i}{2}=\pm \frac{3}{2}i\quad \Leftrightarrow \quad z=\left\{ \begin{array}{*{35}l}
+
-
1+i \\
+
-
1-2i\text{ } \\
+
-
\end{array} \right.</math>
+
-
 
+
-
 
+
-
Finally, we substitute the solutions into the equation and check that it is satisfied:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& z=1+i:\quad z^{2}-\left( 2-i \right)z+\left( 3-i \right) \\
+
-
& =\left( 1+i \right)^{2}-\left( 2-i \right)\left( 1+i \right)+3-i \\
+
-
& =1+2i+i^{2}-\left( 2+2i-i-i^{2} \right)+3-i \\
+
-
& =1+2i-1-2-i-1+3-i=0, \\
+
-
\end{align}</math>
+
-
 
+
 +
{{Displayed math||<math>z-\frac{2-i}{2} = \pm\frac{3}{2}\,i\quad \Leftrightarrow \quad z=\left\{ \begin{align}
 +
&1+i\,,\\
 +
&1-2i\,\textrm{.}
 +
\end{align}\right.</math>}}
 +
Finally, we substitute the solutions into the equation and check that it is satisfied
<math>\begin{align}
<math>\begin{align}
-
& z=1-2i:\quad z^{2}-\left( 2-i \right)z+\left( 3-i \right) \\
+
z={}\rlap{1+i:}\phantom{1-2i:}{}\quad z^2-(2-i)z+(3-i)
-
& =\left( 1-2i \right)^{2}-\left( 2-i \right)\left( 1-2i \right)+3-i \\
+
&= (1+i)^2-(2-i)(1+i)+3-i\\[5pt]
-
& =1-4i+4i^{2}-\left( 2-4i-i+2i^{2} \right)+3-i \\
+
&= 1+2i+i^2-(2+2i-i-i^2)+3-i\\[5pt]
-
& =1-4i-4-2+5i+2+3-i=0. \\
+
&= 1+2i-1-2-i-1+3-i\\[5pt]
 +
&=0\,,\\[10pt]
 +
z=1-2i:\quad z^2-(2-i)z+(3-i)
 +
&= (1-2i)^2-(2-i)(1-2i)+3-i\\[5pt]
 +
&= 1-4i+4i^2-(2-4i-i+2i^2)+3-i\\[5pt]
 +
&= 1-4i-4-2+5i+2+3-i\\[5pt]
 +
&= 0\,\textrm{.}
\end{align}</math>
\end{align}</math>

Version vom 15:32, 30. Okt. 2008

Complete the square of the left-hand side,

\displaystyle \begin{align}

\Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(\frac{2-i}{2}\Bigr)^2+3-i &= 0\,,\\[5pt] \Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(1-i+\frac{1}{4}i^2\Bigr)+3-i&=0\,,\\[5pt] \Bigl(z-\frac{2-i}{2}\Bigr)^2-1+i+\frac{1}{4}+3-i&=0\,,\\[5pt] \Bigl(z-\frac{2-i}{2}\Bigr)^2+\frac{9}{4}&=0\,\textrm{.} \end{align}

Taking the square root then gives that the solutions are

\displaystyle z-\frac{2-i}{2} = \pm\frac{3}{2}\,i\quad \Leftrightarrow \quad z=\left\{ \begin{align}

&1+i\,,\\ &1-2i\,\textrm{.} \end{align}\right.

Finally, we substitute the solutions into the equation and check that it is satisfied

\displaystyle \begin{align} z={}\rlap{1+i:}\phantom{1-2i:}{}\quad z^2-(2-i)z+(3-i) &= (1+i)^2-(2-i)(1+i)+3-i\\[5pt] &= 1+2i+i^2-(2+2i-i-i^2)+3-i\\[5pt] &= 1+2i-1-2-i-1+3-i\\[5pt] &=0\,,\\[10pt] z=1-2i:\quad z^2-(2-i)z+(3-i) &= (1-2i)^2-(2-i)(1-2i)+3-i\\[5pt] &= 1-4i+4i^2-(2-4i-i+2i^2)+3-i\\[5pt] &= 1-4i-4-2+5i+2+3-i\\[5pt] &= 0\,\textrm{.} \end{align}