Lösung 3.3:4c
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | We complete the square on the left-hand side | + | We complete the square on the left-hand side, |
+ | {{Displayed math||<math>\begin{align} | ||
+ | (z+1)^2-1^2+3 &= 0\,,\\[5pt] | ||
+ | (z+1)^2+2 &= 0\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | Taking the root now gives <math>z+1=\pm i\sqrt{2}</math>, i.e. <math>z=-1+i\sqrt{2}</math> and <math>z=-1-i\sqrt{2}</math>. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | Taking the root now gives | + | |
- | <math>z+1=\pm i\sqrt{2}</math> | + | |
- | i.e. | + | |
- | <math>z=-1+i\sqrt{2}</math> | + | |
- | and | + | |
- | <math>z=-1-i\sqrt{2}</math>. | + | |
We test the solutions in the equation to ascertain that we have calculated correctly. | We test the solutions in the equation to ascertain that we have calculated correctly. | ||
- | |||
- | |||
- | <math>\begin{align} | ||
- | & z=-1+i\sqrt{2}:\quad z^{2}+2z+3=\left( -1+i\sqrt{2} \right)^{2}+2\left( -1+i\sqrt{2} \right)+3 \\ | ||
- | & =\left( -1 \right)^{2}-2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2+2i\sqrt{2}+3 \\ | ||
- | & =1-2\centerdot i\sqrt{2}-2-2+2i\sqrt{2}+3=0, \\ | ||
- | \end{align}</math> | ||
- | |||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | + | z=-1+i\sqrt{2}:\quad z^2+2z+3 | |
- | & = | + | &= \bigl(-1+i\sqrt{2}\,\bigr)^2 + 2\bigl(-1+i\sqrt{2}\bigr) + 3\\[5pt] |
- | & =1+2\ | + | &= (-1)^2 - 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 + 2i\sqrt{2} + 3\\[5pt] |
+ | &= 1-2\cdot i\sqrt{2}-2-2+2i\sqrt{2}+3\\[5pt] | ||
+ | &= 0,\\[10pt] | ||
+ | z={}\rlap{-1-i\sqrt{2}:}\phantom{-1+i\sqrt{2}:}{}\quad z^2+2z+3 | ||
+ | &= \bigl(-1-i\sqrt{2}\,\bigr)^2 + 2\bigl(-1-i\sqrt{2}\,\bigr) + 3\\[5pt] | ||
+ | &= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt] | ||
+ | &= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt] | ||
+ | &= 0, | ||
\end{align}</math> | \end{align}</math> |
Version vom 14:43, 30. Okt. 2008
We complete the square on the left-hand side,
\displaystyle \begin{align}
(z+1)^2-1^2+3 &= 0\,,\\[5pt] (z+1)^2+2 &= 0\,\textrm{.} \end{align} |
Taking the root now gives \displaystyle z+1=\pm i\sqrt{2}, i.e. \displaystyle z=-1+i\sqrt{2} and \displaystyle z=-1-i\sqrt{2}.
We test the solutions in the equation to ascertain that we have calculated correctly.
\displaystyle \begin{align} z=-1+i\sqrt{2}:\quad z^2+2z+3 &= \bigl(-1+i\sqrt{2}\,\bigr)^2 + 2\bigl(-1+i\sqrt{2}\bigr) + 3\\[5pt] &= (-1)^2 - 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 + 2i\sqrt{2} + 3\\[5pt] &= 1-2\cdot i\sqrt{2}-2-2+2i\sqrt{2}+3\\[5pt] &= 0,\\[10pt] z={}\rlap{-1-i\sqrt{2}:}\phantom{-1+i\sqrt{2}:}{}\quad z^2+2z+3 &= \bigl(-1-i\sqrt{2}\,\bigr)^2 + 2\bigl(-1-i\sqrt{2}\,\bigr) + 3\\[5pt] &= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt] &= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt] &= 0, \end{align}