Lösung 3.3:4a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 3: Zeile 3:
We write
We write
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt]
-
& z=r\left( \cos \alpha +i\sin \alpha \right) \\
+
i &= 1\,\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,,
-
& i=1\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right) \\
+
\end{align}</math>}}
-
\end{align}</math>
+
-
 
+
and, on using de Moivre's formula, the equation becomes
and, on using de Moivre's formula, the equation becomes
-
 
+
{{Displayed math||<math>r^2(\cos 2\alpha + i\sin 2\alpha) = 1\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,\textrm{.}</math>}}
-
<math>r^{2}\left( \cos 2\alpha +i\sin 2\alpha \right)=1\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)</math>
+
-
 
+
Both sides are equal when
Both sides are equal when
-
 
+
{{Displayed math||<math>\left\{\begin{align}
-
<math>\left\{ \begin{array}{*{35}l}
+
r^2 &= 1\,,\\[5pt]
-
r^{2}=1 \\
+
2\alpha &= \frac{\pi}{2}+2n\pi\,,\quad\text{(n is an arbitrary integer),}
-
2\alpha =\frac{\pi }{2}+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
+
\end{align}\right.</math>}}
-
\end{array} \right.</math>
+
-
 
+
which gives that
which gives that
 +
{{Displayed math||<math>\left\{\begin{align}
 +
r &= 1\,,\\[5pt]
 +
\alpha &= \frac{\pi}{4} + n\pi\,,\quad\text{(n is an arbitrary integer).}
 +
\end{align}\right.</math>}}
-
<math>\left\{ \begin{array}{*{35}l}
+
When <math>n=0</math> and <math>n=1</math>, we get two different arguments for
-
r=1 \\
+
<math>\alpha</math>, whilst different values of <math>n</math> only give these arguments plus/minus a multiple of <math>2\pi</math>.
-
\alpha =\frac{\pi }{4}+n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
+
-
\end{array} \right.</math>
+
-
 
+
-
 
+
-
When
+
-
<math>n=0</math>
+
-
and
+
-
<math>n=\text{1}</math>, we get two different arguments for
+
-
<math>\alpha </math>, whilst different values of
+
-
<math>n</math>
+
-
only give these arguments plus/minus a multiple of
+
-
<math>2\pi </math>.
+
The solutions to the equation are
The solutions to the equation are
-
 
+
{{Displayed math||<math>z=\left\{\begin{align}
-
<math>z=\left\{ \begin{array}{*{35}l}
+
&1\cdot\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt]
-
\ 1\centerdot \left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\
+
&1\cdot\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr)
-
\ 1\centerdot \left( \cos \frac{3\pi }{4}+i\sin \frac{3\pi }{4} \right) \\
+
\end{align}\right.
-
\end{array} \right.=\left\{ \begin{array}{*{35}l}
+
=
-
\ \frac{1+i}{\sqrt{2}} \\
+
\left\{\begin{align}
-
\ -\frac{1+i}{\sqrt{2}} \\
+
&\frac{1+i}{\sqrt{2}}\,,\\[5pt]
-
\end{array} \right.</math>
+
&-\frac{1+i}{\sqrt{2}}\,\textrm{.}
 +
\end{align}\right.</math>}}

Version vom 14:18, 30. Okt. 2008

This is a typical binomial equation which we solve in polar form.

We write

\displaystyle \begin{align}

z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] i &= 1\,\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,, \end{align}

and, on using de Moivre's formula, the equation becomes

\displaystyle r^2(\cos 2\alpha + i\sin 2\alpha) = 1\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,\textrm{.}

Both sides are equal when

\displaystyle \left\{\begin{align}

r^2 &= 1\,,\\[5pt] 2\alpha &= \frac{\pi}{2}+2n\pi\,,\quad\text{(n is an arbitrary integer),} \end{align}\right.

which gives that

\displaystyle \left\{\begin{align}

r &= 1\,,\\[5pt] \alpha &= \frac{\pi}{4} + n\pi\,,\quad\text{(n is an arbitrary integer).} \end{align}\right.

When \displaystyle n=0 and \displaystyle n=1, we get two different arguments for \displaystyle \alpha, whilst different values of \displaystyle n only give these arguments plus/minus a multiple of \displaystyle 2\pi.

The solutions to the equation are

\displaystyle z=\left\{\begin{align}

&1\cdot\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] &1\cdot\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr) \end{align}\right. = \left\{\begin{align} &\frac{1+i}{\sqrt{2}}\,,\\[5pt] &-\frac{1+i}{\sqrt{2}}\,\textrm{.} \end{align}\right.