Lösung 3.3:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
If we take the minus sign out in front of the whole expression, | If we take the minus sign out in front of the whole expression, | ||
| - | + | {{Displayed math||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}} | |
| - | <math>-\ | + | |
| - | + | ||
and collect together the first-degree terms, | and collect together the first-degree terms, | ||
| + | {{Displayed math||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}} | ||
| - | + | we can then complete the square of the expression inside the outer bracket, | |
| - | + | ||
| - | + | ||
| - | we can then complete the square of the expression inside the outer bracket | + | |
| - | + | ||
| - | + | ||
| - | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
| - | + | -\bigl(z^2+(-4+2i)z-1\bigr) | |
| - | & =-\ | + | &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] |
| - | & =-\ | + | &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] |
| - | & =-\ | + | &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] |
| - | & =-\ | + | &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] |
| - | & =- | + | &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] |
| - | \end{align}</math> | + | &= -(z-2+i)^2+4-4i\,\textrm{.} |
| + | \end{align}</math>}} | ||
Version vom 13:45, 30. Okt. 2008
If we take the minus sign out in front of the whole expression,
| \displaystyle -\bigl(z^2+2iz-4z-1\bigr)\,, |
and collect together the first-degree terms,
| \displaystyle -\bigl(z^2+(-4+2i)z-1\bigr)\,, |
we can then complete the square of the expression inside the outer bracket,
| \displaystyle \begin{align}
-\bigl(z^2+(-4+2i)z-1\bigr) &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] &= -(z-2+i)^2+4-4i\,\textrm{.} \end{align} |
