Lösung 3.3:2e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we treat the expression | + | If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation |
- | <math>w=\frac{z+i}{z-i}</math> | + | |
- | as an unknown, we have the equation | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>w^2=-1\,\textrm{.}</math>}} | ||
We know already that this equation has roots | We know already that this equation has roots | ||
+ | {{Displayed math||<math>w=\left\{\begin{align} | ||
+ | -i\,,&\\[5pt] | ||
+ | i\,,& | ||
+ | \end{align}\right.</math>}} | ||
- | + | so <math>z</math> should satisfy one of the equation's | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | so | + | |
- | <math>z | + | |
- | should satisfy one of the equation's | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}} | ||
We solve these equations one by one. | We solve these equations one by one. | ||
- | <math> | + | *<math>(z+i)/(z-i)=-i</math>: |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | :Multiply both sides by <math>z-i</math>, | ||
- | + | {{Displayed math||<math>z+i=-i(z-i)\,\textrm{.}</math>}} | |
- | <math> | + | |
+ | :Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | ||
- | + | {{Displayed math||<math>z+iz=-1-i\,\textrm{.}</math>}} | |
- | <math>z-i</math> | + | |
+ | :This gives | ||
- | <math>z+i= | + | {{Displayed math||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}} |
- | + | *<math>(z+i)/(z-i)=i</math>: | |
+ | :Multiply both sides by <math>z-i</math>, | ||
- | <math>z | + | {{Displayed math||<math>z+i=i(z-i)\,\textrm{.}</math>}} |
+ | :Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | ||
- | + | {{Displayed math||<math>z-iz=1-i\,\textrm{.}</math>}} | |
+ | :This gives | ||
- | <math>z=\frac{1-i}{1-i}=1</math> | + | {{Displayed math||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}} |
- | The solutions are therefore | + | The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>. |
- | <math>z=- | + | |
- | and | + | |
- | <math>z=\ | + |
Version vom 13:21, 30. Okt. 2008
If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation
\displaystyle w^2=-1\,\textrm{.} |
We know already that this equation has roots
\displaystyle w=\left\{\begin{align}
-i\,,&\\[5pt] i\,,& \end{align}\right. |
so \displaystyle z should satisfy one of the equation's
\displaystyle \frac{z+i}{z-i}=-i\quad or \displaystyle \quad\frac{z+i}{z-i}=i\,\textrm{.} |
We solve these equations one by one.
- \displaystyle (z+i)/(z-i)=-i:
- Multiply both sides by \displaystyle z-i,
\displaystyle z+i=-i(z-i)\,\textrm{.} |
- Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z+iz=-1-i\,\textrm{.} |
- This gives
\displaystyle z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.} |
- \displaystyle (z+i)/(z-i)=i:
- Multiply both sides by \displaystyle z-i,
\displaystyle z+i=i(z-i)\,\textrm{.} |
- Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z-iz=1-i\,\textrm{.} |
- This gives
\displaystyle z = \frac{1-i}{1-i} = 1\,\textrm{.} |
The solutions are therefore \displaystyle z=-1 and \displaystyle z=1\,.