Lösung 3.3:2e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we treat the expression
+
If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation
-
<math>w=\frac{z+i}{z-i}</math>
+
-
as an unknown, we have the equation
+
-
 
+
-
 
+
-
<math>w^{2}=-1</math>
+
 +
{{Displayed math||<math>w^2=-1\,\textrm{.}</math>}}
We know already that this equation has roots
We know already that this equation has roots
 +
{{Displayed math||<math>w=\left\{\begin{align}
 +
-i\,,&\\[5pt]
 +
i\,,&
 +
\end{align}\right.</math>}}
-
<math>w=\left\{ \begin{array}{*{35}l}
+
so <math>z</math> should satisfy one of the equation's
-
-i \\
+
-
i \\
+
-
\end{array} \right.</math>
+
-
 
+
-
 
+
-
so
+
-
<math>z\text{ }</math>
+
-
should satisfy one of the equation's
+
-
 
+
-
 
+
-
<math>\frac{z+i}{z-i}=-i</math>
+
-
or
+
-
<math>\frac{z+i}{z-i}=i</math>
+
 +
{{Displayed math||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}}
We solve these equations one by one.
We solve these equations one by one.
-
<math>\underline{\underline{\frac{z+i}{z-i}=-i}}</math>
+
*<math>(z+i)/(z-i)=-i</math>:
-
 
+
-
 
+
-
Multiply both sides by
+
-
<math>z-i</math>:
+
-
 
+
-
 
+
-
<math>z+i=-i\left( z-i \right)</math>
+
-
 
+
-
 
+
-
Move all the
+
-
<math>z</math>
+
-
-terms over to the left-hand side and all the constants to the right-hand side,
+
-
 
+
-
 
+
-
<math>z+iz=-1-i</math>
+
-
 
+
-
 
+
-
This gives
+
-
 
+
-
 
+
-
<math>z=\frac{-1-i}{1+i}=\frac{-\left( 1+i \right)}{1+i}=-1</math>
+
-
 
+
 +
:Multiply both sides by <math>z-i</math>,
-
+
{{Displayed math||<math>z+i=-i(z-i)\,\textrm{.}</math>}}
-
<math>\underline{\underline{\frac{z+i}{z-i}=i}}</math>
+
 +
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
-
Multiply both sides by
+
{{Displayed math||<math>z+iz=-1-i\,\textrm{.}</math>}}
-
<math>z-i</math>:
+
 +
:This gives
-
<math>z+i=i\left( z-i \right)</math>
+
{{Displayed math||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}}
-
Move all the z-terms over to the left-hand side and all the constants to the right-hand side,
+
*<math>(z+i)/(z-i)=i</math>:
 +
:Multiply both sides by <math>z-i</math>,
-
<math>z-iz=1-i</math>
+
{{Displayed math||<math>z+i=i(z-i)\,\textrm{.}</math>}}
 +
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
-
This gives
+
{{Displayed math||<math>z-iz=1-i\,\textrm{.}</math>}}
 +
:This gives
-
<math>z=\frac{1-i}{1-i}=1</math>
+
{{Displayed math||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}}
-
The solutions are therefore
+
The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>.
-
<math>z=-\text{1}</math>
+
-
and
+
-
<math>z=\text{1}</math>.
+

Version vom 13:21, 30. Okt. 2008

If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation

\displaystyle w^2=-1\,\textrm{.}

We know already that this equation has roots

\displaystyle w=\left\{\begin{align}

-i\,,&\\[5pt] i\,,& \end{align}\right.

so \displaystyle z should satisfy one of the equation's

\displaystyle \frac{z+i}{z-i}=-i\quad or \displaystyle \quad\frac{z+i}{z-i}=i\,\textrm{.}

We solve these equations one by one.


  • \displaystyle (z+i)/(z-i)=-i:
Multiply both sides by \displaystyle z-i,
\displaystyle z+i=-i(z-i)\,\textrm{.}
Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z+iz=-1-i\,\textrm{.}
This gives
\displaystyle z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}


  • \displaystyle (z+i)/(z-i)=i:
Multiply both sides by \displaystyle z-i,
\displaystyle z+i=i(z-i)\,\textrm{.}
Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z-iz=1-i\,\textrm{.}
This gives
\displaystyle z = \frac{1-i}{1-i} = 1\,\textrm{.}


The solutions are therefore \displaystyle z=-1 and \displaystyle z=1\,.