Lösung 3.2:4d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
For magnitudes of quotients, we have the arithmetical rule | For magnitudes of quotients, we have the arithmetical rule | ||
+ | {{Displayed math||<math>\left|\frac{z}{w}\right| = \frac{|z|}{|w|}\,\textrm{.}</math>}} | ||
- | + | We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other, | |
- | + | {{Displayed math||<math>\begin{align} | |
- | + | \left|\frac{3-4i}{3+2i}\right| | |
- | + | &= \frac{|3-4i|}{|3+2i|} | |
- | + | = \frac{\sqrt{3^2+(-4)^2}}{\sqrt{3^2+2^2}} | |
- | <math>\begin{align} | + | = \frac{\sqrt{9+16}}{\sqrt{9+4}} |
- | + | = \frac{\sqrt{25}}{\sqrt{13}} | |
- | + | = \frac{5}{\sqrt{13}}\,\textrm{.} | |
- | \end{align}</math> | + | \end{align}</math>}} |
Version vom 12:16, 29. Okt. 2008
For magnitudes of quotients, we have the arithmetical rule
\displaystyle \left|\frac{z}{w}\right| = \frac{|z|}{|w|}\,\textrm{.} |
We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other,
\displaystyle \begin{align}
\left|\frac{3-4i}{3+2i}\right| &= \frac{|3-4i|}{|3+2i|} = \frac{\sqrt{3^2+(-4)^2}}{\sqrt{3^2+2^2}} = \frac{\sqrt{9+16}}{\sqrt{9+4}} = \frac{\sqrt{25}}{\sqrt{13}} = \frac{5}{\sqrt{13}}\,\textrm{.} \end{align} |