Lösung 2.3:2b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We have a product of two factors in the integrand, so a partial integration does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate
+
We have a product of two factors in the integrand, so an integration by parts does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate <math>x^3</math> (so as to reduce its exponent by 1), we need to find a primitive function for <math>e^{x^2}</math>, and how do we do that? If, on the other hand, we integrate <math>x^3</math> and differentiate <math>e^{x^2}</math>, we get
-
<math>x^{\text{3}}</math>
+
-
(so as to reduce its exponent by
+
-
<math>\text{1}</math>), we need to find a primitive function for
+
-
<math>e^{x^{2}}</math>, and how do we do that? If, on the other hand, we integrate
+
-
<math>x^{\text{3}}</math>
+
-
and differentiate
+
-
<math>e^{x^{2}}</math>, we get
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\int x^3\cdot e^{x^2}\,dx
-
& \int{x^{3}e^{x^{2}}\,dx=\frac{x^{4}}{4}}\centerdot e^{x^{2}}-\int{\frac{x^{4}}{4}}\centerdot e^{x^{2}}2x\,dx \\
+
&= \frac{x^4}{4}\cdot e^{x^2} - \int\frac{x^4}{4}\cdot e^{x^2}2x\,dx\\[5pt]
-
& =\frac{1}{4}x^{4}e^{x^{2}}-\frac{1}{2}\int{x^{5}e^{x^{2}}\,dx} \\
+
&= \frac{1}{4}x^{4}e^{x^2} - \frac{1}{2}\int x^5e^{x^2}\,dx
-
\end{align}</math>
+
\end{align}</math>}}
which just seems to make the integral harder. The solution is instead to substitute
which just seems to make the integral harder. The solution is instead to substitute
-
<math>u=x^{2}</math>. If we write the integral as
+
<math>u=x^2</math>. If we write the integral as
-
 
+
-
 
+
-
<math>\int\limits_{0}^{1}{x^{3}e^{x^{2}}\,dx}=\int\limits_{0}^{1}{x^{2}e^{x^{2}}x\,dx}</math>
+
-
 
+
-
 
+
-
we see that the expression
+
-
<math>''x\,dx''</math>
+
-
can be replaced by
+
-
<math>du</math>
+
-
and the rest of the integrand contains only
+
-
<math>x</math>
+
-
in the form of
+
-
<math>x^{\text{2}}</math>. The substitution gives
+
-
 
+
-
<math>\begin{align}
+
{{Displayed math||<math>\int\limits_0^1 x^3e^{x^2}\,dx = \int\limits_0^1 x^2e^{x^2}x\,dx</math>}}
-
& \int\limits_{0}^{1}{x^{3}e^{x^{2}}\,dx}=\int\limits_{0}^{1}{x^{2}e^{x^{2}}x\,dx}=\left\{ \begin{matrix}
+
-
u=x^{2} \\
+
-
du=\left( x^{2} \right)^{\prime }\,dx=2x\,dx \\
+
-
\end{matrix} \right\} \\
+
-
& =\int\limits_{0}^{1}{ue^{u}\frac{1}{2}\,du}=\frac{1}{2}\int\limits_{0}^{1}{ue^{u}\,du} \\
+
-
\end{align}</math>
+
 +
we see that the expression "<math>x\,dx</math>" can be replaced by <math>du</math>
 +
and the rest of the integrand contains only <math>x</math> in the form of <math>x^2</math>. The substitution gives
-
We can then calculate this integral be partial integration, where we differentiate away the factor
+
{{Displayed math||<math>\begin{align}
-
<math>u</math>:
+
\int\limits_0^1 x^3e^{x^2}\,dx
 +
&= \int\limits_0^1 x^2e^{x^2}x\,dx\\[5pt]
 +
&= \left\{\begin{align}
 +
u &= x^2\\[5pt]
 +
du &= \bigl(x^2\bigr)'\,dx = 2x\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= \int\limits_0^1 ue^u\tfrac{1}{2}\,du\\[5pt]
 +
&= \frac{1}{2}\int\limits_0^1 ue^u\,du\,\textrm{.}
 +
\end{align}</math>}}
 +
We can then calculate this integral by integration by parts, where we differentiate away the factor <math>u</math>,
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& \frac{1}{2}\int\limits_{0}^{1}{ue^{u}\,du}=\frac{1}{2}\left[ ue^{u} \right]_{0}^{1}-\frac{1}{2}\int\limits_{0}^{1}{1\centerdot e^{u}\,du} \\
+
\frac{1}{2}\int\limits_0^1 ue^u\,du
-
& =\frac{1}{2}\left( 1\centerdot e^{1}-0 \right)-\frac{1}{2}\left[ e^{u} \right]_{0}^{1} \\
+
&= \frac{1}{2}\Bigl[\ ue^u\ \Bigr]_0^1 - \frac{1}{2}\int\limits_0^1 1\cdot e^u\,du\\[5pt]
-
& =\frac{1}{2}e-\frac{1}{2}\left( e^{1}-e^{0} \right) \\
+
&= \frac{1}{2}\bigl(1\cdot e^1-0\bigr) - \frac{1}{2}\Bigl[\ e^u\ \Bigr]_0^1\\[5pt]
-
& =\frac{1}{2}e-\frac{1}{2}e+\frac{1}{2}=\frac{1}{2} \\
+
&= \frac{1}{2}e - \frac{1}{2}\bigl(e^1-e^0\bigr)\\[5pt]
-
\end{align}</math>
+
&= \frac{1}{2}e - \frac{1}{2}e + \frac{1}{2}\\[5pt]
 +
&= \frac{1}{2}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 08:54, 29. Okt. 2008

We have a product of two factors in the integrand, so an integration by parts does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate \displaystyle x^3 (so as to reduce its exponent by 1), we need to find a primitive function for \displaystyle e^{x^2}, and how do we do that? If, on the other hand, we integrate \displaystyle x^3 and differentiate \displaystyle e^{x^2}, we get

\displaystyle \begin{align}

\int x^3\cdot e^{x^2}\,dx &= \frac{x^4}{4}\cdot e^{x^2} - \int\frac{x^4}{4}\cdot e^{x^2}2x\,dx\\[5pt] &= \frac{1}{4}x^{4}e^{x^2} - \frac{1}{2}\int x^5e^{x^2}\,dx \end{align}

which just seems to make the integral harder. The solution is instead to substitute \displaystyle u=x^2. If we write the integral as

\displaystyle \int\limits_0^1 x^3e^{x^2}\,dx = \int\limits_0^1 x^2e^{x^2}x\,dx

we see that the expression "\displaystyle x\,dx" can be replaced by \displaystyle du and the rest of the integrand contains only \displaystyle x in the form of \displaystyle x^2. The substitution gives

\displaystyle \begin{align}

\int\limits_0^1 x^3e^{x^2}\,dx &= \int\limits_0^1 x^2e^{x^2}x\,dx\\[5pt] &= \left\{\begin{align} u &= x^2\\[5pt] du &= \bigl(x^2\bigr)'\,dx = 2x\,dx \end{align}\right\}\\[5pt] &= \int\limits_0^1 ue^u\tfrac{1}{2}\,du\\[5pt] &= \frac{1}{2}\int\limits_0^1 ue^u\,du\,\textrm{.} \end{align}

We can then calculate this integral by integration by parts, where we differentiate away the factor \displaystyle u,

\displaystyle \begin{align}

\frac{1}{2}\int\limits_0^1 ue^u\,du &= \frac{1}{2}\Bigl[\ ue^u\ \Bigr]_0^1 - \frac{1}{2}\int\limits_0^1 1\cdot e^u\,du\\[5pt] &= \frac{1}{2}\bigl(1\cdot e^1-0\bigr) - \frac{1}{2}\Bigl[\ e^u\ \Bigr]_0^1\\[5pt] &= \frac{1}{2}e - \frac{1}{2}\bigl(e^1-e^0\bigr)\\[5pt] &= \frac{1}{2}e - \frac{1}{2}e + \frac{1}{2}\\[5pt] &= \frac{1}{2}\,\textrm{.} \end{align}