Lösung 2.3:2b
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | We have a product of two factors in the integrand, | + | We have a product of two factors in the integrand, so an integration by parts does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate <math>x^3</math> (so as to reduce its exponent by 1), we need to find a primitive function for <math>e^{x^2}</math>, and how do we do that? If, on the other hand, we integrate <math>x^3</math> and differentiate <math>e^{x^2}</math>, we get |
- | <math>x^ | + | |
- | (so as to reduce its exponent by | + | |
- | + | ||
- | <math>e^{x^ | + | |
- | <math>x^ | + | |
- | and differentiate | + | |
- | <math>e^{x^ | + | |
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \int x^3\cdot e^{x^2}\,dx |
- | + | &= \frac{x^4}{4}\cdot e^{x^2} - \int\frac{x^4}{4}\cdot e^{x^2}2x\,dx\\[5pt] | |
- | & =\frac{1}{4}x^{4}e^{x^ | + | &= \frac{1}{4}x^{4}e^{x^2} - \frac{1}{2}\int x^5e^{x^2}\,dx |
- | \end{align}</math> | + | \end{align}</math>}} |
which just seems to make the integral harder. The solution is instead to substitute | which just seems to make the integral harder. The solution is instead to substitute | ||
- | <math>u=x^ | + | <math>u=x^2</math>. If we write the integral as |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math> | + | {{Displayed math||<math>\int\limits_0^1 x^3e^{x^2}\,dx = \int\limits_0^1 x^2e^{x^2}x\,dx</math>}} |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | we see that the expression "<math>x\,dx</math>" can be replaced by <math>du</math> | ||
+ | and the rest of the integrand contains only <math>x</math> in the form of <math>x^2</math>. The substitution gives | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>u</math> | + | \int\limits_0^1 x^3e^{x^2}\,dx |
+ | &= \int\limits_0^1 x^2e^{x^2}x\,dx\\[5pt] | ||
+ | &= \left\{\begin{align} | ||
+ | u &= x^2\\[5pt] | ||
+ | du &= \bigl(x^2\bigr)'\,dx = 2x\,dx | ||
+ | \end{align}\right\}\\[5pt] | ||
+ | &= \int\limits_0^1 ue^u\tfrac{1}{2}\,du\\[5pt] | ||
+ | &= \frac{1}{2}\int\limits_0^1 ue^u\,du\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | We can then calculate this integral by integration by parts, where we differentiate away the factor <math>u</math>, | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | \frac{1}{2}\int\limits_0^1 ue^u\,du | |
- | & =\frac{1}{2}\ | + | &= \frac{1}{2}\Bigl[\ ue^u\ \Bigr]_0^1 - \frac{1}{2}\int\limits_0^1 1\cdot e^u\,du\\[5pt] |
- | & =\frac{1}{2}e-\frac{1}{2}\ | + | &= \frac{1}{2}\bigl(1\cdot e^1-0\bigr) - \frac{1}{2}\Bigl[\ e^u\ \Bigr]_0^1\\[5pt] |
- | & =\frac{1}{2}e-\frac{1}{2}e+\frac{1}{2}=\frac{1}{2} \\ | + | &= \frac{1}{2}e - \frac{1}{2}\bigl(e^1-e^0\bigr)\\[5pt] |
- | \end{align}</math> | + | &= \frac{1}{2}e - \frac{1}{2}e + \frac{1}{2}\\[5pt] |
+ | &= \frac{1}{2}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 08:54, 29. Okt. 2008
We have a product of two factors in the integrand, so an integration by parts does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate \displaystyle x^3 (so as to reduce its exponent by 1), we need to find a primitive function for \displaystyle e^{x^2}, and how do we do that? If, on the other hand, we integrate \displaystyle x^3 and differentiate \displaystyle e^{x^2}, we get
\displaystyle \begin{align}
\int x^3\cdot e^{x^2}\,dx &= \frac{x^4}{4}\cdot e^{x^2} - \int\frac{x^4}{4}\cdot e^{x^2}2x\,dx\\[5pt] &= \frac{1}{4}x^{4}e^{x^2} - \frac{1}{2}\int x^5e^{x^2}\,dx \end{align} |
which just seems to make the integral harder. The solution is instead to substitute \displaystyle u=x^2. If we write the integral as
\displaystyle \int\limits_0^1 x^3e^{x^2}\,dx = \int\limits_0^1 x^2e^{x^2}x\,dx |
we see that the expression "\displaystyle x\,dx" can be replaced by \displaystyle du and the rest of the integrand contains only \displaystyle x in the form of \displaystyle x^2. The substitution gives
\displaystyle \begin{align}
\int\limits_0^1 x^3e^{x^2}\,dx &= \int\limits_0^1 x^2e^{x^2}x\,dx\\[5pt] &= \left\{\begin{align} u &= x^2\\[5pt] du &= \bigl(x^2\bigr)'\,dx = 2x\,dx \end{align}\right\}\\[5pt] &= \int\limits_0^1 ue^u\tfrac{1}{2}\,du\\[5pt] &= \frac{1}{2}\int\limits_0^1 ue^u\,du\,\textrm{.} \end{align} |
We can then calculate this integral by integration by parts, where we differentiate away the factor \displaystyle u,
\displaystyle \begin{align}
\frac{1}{2}\int\limits_0^1 ue^u\,du &= \frac{1}{2}\Bigl[\ ue^u\ \Bigr]_0^1 - \frac{1}{2}\int\limits_0^1 1\cdot e^u\,du\\[5pt] &= \frac{1}{2}\bigl(1\cdot e^1-0\bigr) - \frac{1}{2}\Bigl[\ e^u\ \Bigr]_0^1\\[5pt] &= \frac{1}{2}e - \frac{1}{2}\bigl(e^1-e^0\bigr)\\[5pt] &= \frac{1}{2}e - \frac{1}{2}e + \frac{1}{2}\\[5pt] &= \frac{1}{2}\,\textrm{.} \end{align} |