Lösung 2.3:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | we look at the formula for | + | If we look at the formula for integration by parts, |
| + | {{Displayed math||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}} | ||
| - | <math> | + | we see that if we choose <math>f(x)=\sin x</math> and <math>g(x)=x+1</math>, then the factor <math>g(x)</math> will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for <math>f(x)</math> (which we can) and that we can then integrate it. Let's try! |
| - | + | {{Displayed math||<math>\begin{align} | |
| - | + | \int (x+1)\sin x\,dx | |
| - | + | &= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt] | |
| - | + | &= -(x+1)\cos x + \int \cos x\,dx\\[5pt] | |
| - | + | &= -(x+1)\cos x + \sin x + C\,\textrm{.} | |
| - | + | \end{align}</math>}} | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\begin{align} | + | |
| - | + | ||
| - | & =- | + | |
| - | & =- | + | |
| - | \end{align}</math> | + | |
Version vom 08:13, 29. Okt. 2008
If we look at the formula for integration by parts,
| \displaystyle \int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,, |
we see that if we choose \displaystyle f(x)=\sin x and \displaystyle g(x)=x+1, then the factor \displaystyle g(x) will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for \displaystyle f(x) (which we can) and that we can then integrate it. Let's try!
| \displaystyle \begin{align}
\int (x+1)\sin x\,dx &= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt] &= -(x+1)\cos x + \int \cos x\,dx\\[5pt] &= -(x+1)\cos x + \sin x + C\,\textrm{.} \end{align} |
