Lösung 2.1:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we multiply the factors in the integrand together and use the power laws, | If we multiply the factors in the integrand together and use the power laws, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int e^{2x}\bigl(e^x+1\bigr)\,dx | \int e^{2x}\bigl(e^x+1\bigr)\,dx | ||
&= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] | &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] | ||
Zeile 11: | Zeile 11: | ||
<math>a</math> is a constant. The indefinite integral is therefore | <math>a</math> is a constant. The indefinite integral is therefore | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,</math>}} |
where <math>C</math> is an arbitrary constant. | where <math>C</math> is an arbitrary constant. |
Version vom 12:59, 10. Mär. 2009
If we multiply the factors in the integrand together and use the power laws,
\displaystyle \begin{align}
\int e^{2x}\bigl(e^x+1\bigr)\,dx &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, \end{align} |
we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore
\displaystyle \int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,, |
where \displaystyle C is an arbitrary constant.