Lösung 2.1:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 4: Zeile 4:
Because <math>\sin x</math> is a standard function, we know from the course notes that its primitive functions are
Because <math>\sin x</math> is a standard function, we know from the course notes that its primitive functions are
-
{{Displayed math||<math>\int{\sin x\,dx}=-\cos x+C\,,</math>}}
+
{{Abgesetzte Formel||<math>\int{\sin x\,dx}=-\cos x+C\,,</math>}}
where <math>C</math> is an arbitrary constant.
where <math>C</math> is an arbitrary constant.

Version vom 12:58, 10. Mär. 2009

The notation "\displaystyle \smallint\sin x\,dx" is called the indefinite integral of \displaystyle \sin x and means all primitive functions of \displaystyle \sin x.

Because \displaystyle \sin x is a standard function, we know from the course notes that its primitive functions are

\displaystyle \int{\sin x\,dx}=-\cos x+C\,,

where \displaystyle C is an arbitrary constant.