Lösung 2.1:1a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 5: | Zeile 5: | ||
Because the region is a rectangle, we can determine its area directly and obtain | Because the region is a rectangle, we can determine its area directly and obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\limits_{-1}^{2} 2\,dx = \text{(base)}\cdot\text{(height)} = 3\cdot 2 = 6\,\textrm{.}</math>}} |
Version vom 12:57, 10. Mär. 2009
The value of the integral can be interpreted as the area under the graph \displaystyle y=2 from \displaystyle x=-1\ to \displaystyle x=2.
Because the region is a rectangle, we can determine its area directly and obtain
\displaystyle \int\limits_{-1}^{2} 2\,dx = \text{(base)}\cdot\text{(height)} = 3\cdot 2 = 6\,\textrm{.} |