Lösung 2.2:3a
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type | The secret behind a successful substitution is to be able to recognize the integral as an expression of the type | ||
+ | {{Displayed math||<math>\int \left( \begin{matrix} | ||
+ | \text{an expression}\\ | ||
+ | \text{in u} | ||
+ | \end{matrix}\right)\cdot u'\,dx\,,</math>}} | ||
- | <math> | + | where <math>u=u(x)</math> is the actual substitution. In the integral |
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\int 2x\sin x^2\,dx</math>}} | |
- | <math> | + | |
- | + | ||
+ | we see that the expression <math>x^2</math> is the argument for the sine function, as the same time as its derivative <math>\bigl(x^2\bigr)'=2x</math> stands as a factor in front of sine. Therefore, if we set <math>u=x^2</math>, the integral, the integral will be of the form | ||
- | <math>\int | + | {{Displayed math||<math>\int u'\sin u\,dx\,\textrm{.}</math>}} |
+ | Thus, we can use <math>u=x^2</math> for the substitution, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | + | \int 2x\sin x^2\,dx | |
- | + | &=\left\{\begin{align} | |
- | + | u &= x^2\\[5pt] | |
- | + | du &= 2x\,dx | |
- | + | \end{align}\right\} = \int{\sin u\,du}\\[5pt] | |
- | + | &= -\cos u+C = -\cos x^2 + C\,\textrm{.} | |
- | + | \end{align}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\begin{align} | + | |
- | + | ||
- | u=x^ | + | |
- | du=2x\,dx | + | |
- | \end{ | + | |
- | & =-\cos u+C=-\cos x^ | + | |
- | \end{align}</math> | + |
Version vom 14:04, 28. Okt. 2008
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
\displaystyle \int \left( \begin{matrix}
\text{an expression}\\ \text{in u} \end{matrix}\right)\cdot u'\,dx\,, |
where \displaystyle u=u(x) is the actual substitution. In the integral
\displaystyle \int 2x\sin x^2\,dx |
we see that the expression \displaystyle x^2 is the argument for the sine function, as the same time as its derivative \displaystyle \bigl(x^2\bigr)'=2x stands as a factor in front of sine. Therefore, if we set \displaystyle u=x^2, the integral, the integral will be of the form
\displaystyle \int u'\sin u\,dx\,\textrm{.} |
Thus, we can use \displaystyle u=x^2 for the substitution,
\displaystyle \begin{align}
\int 2x\sin x^2\,dx &=\left\{\begin{align} u &= x^2\\[5pt] du &= 2x\,dx \end{align}\right\} = \int{\sin u\,du}\\[5pt] &= -\cos u+C = -\cos x^2 + C\,\textrm{.} \end{align} |