Lösung 2.2:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
 +
{{Displayed math||<math>\int \left( \begin{matrix}
 +
\text{an expression}\\
 +
\text{in u}
 +
\end{matrix}\right)\cdot u'\,dx\,,</math>}}
-
<math>\int{\left( \begin{matrix}
+
where <math>u=u(x)</math> is the actual substitution. In the integral
-
\text{an}\quad \text{expression} \\
+
-
\text{in}\quad u \\
+
-
\end{matrix} \right)}\centerdot {u}'\,dx</math>,
+
-
where
+
{{Displayed math||<math>\int 2x\sin x^2\,dx</math>}}
-
<math>u=u\left( x \right)</math>
+
-
is the actual substitution. In the integral
+
 +
we see that the expression <math>x^2</math> is the argument for the sine function, as the same time as its derivative <math>\bigl(x^2\bigr)'=2x</math> stands as a factor in front of sine. Therefore, if we set <math>u=x^2</math>, the integral, the integral will be of the form
-
<math>\int{2x\sin x^{2}\,dx}</math>
+
{{Displayed math||<math>\int u'\sin u\,dx\,\textrm{.}</math>}}
 +
Thus, we can use <math>u=x^2</math> for the substitution,
-
we see that the expression
+
{{Displayed math||<math>\begin{align}
-
<math>x^{2}</math>
+
\int 2x\sin x^2\,dx
-
is the argument for the sine function, as the same time as its derivative
+
&=\left\{\begin{align}
-
<math>\left( x^{2} \right)^{\prime }=2x</math>
+
u &= x^2\\[5pt]
-
stands as a factor in front of sine. Therefore, if we set
+
du &= 2x\,dx
-
<math>u=x^{2}</math>, the integral, the integral will be of the form
+
\end{align}\right\} = \int{\sin u\,du}\\[5pt]
-
 
+
&= -\cos u+C = -\cos x^2 + C\,\textrm{.}
-
 
+
\end{align}</math>}}
-
<math>\int{{u}'\sin u\,dx}</math>
+
-
 
+
-
 
+
-
Thus, we can use
+
-
<math>u=x^{2}</math>
+
-
for the substitution:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \int{2x\sin x^{2}\,dx}=\left\{ \begin{matrix}
+
-
u=x^{2} \\
+
-
du=2x\,dx \\
+
-
\end{matrix} \right\}=\int{\sin u\,du} \\
+
-
& =-\cos u+C=-\cos x^{2}+C \\
+
-
\end{align}</math>
+

Version vom 14:04, 28. Okt. 2008

The secret behind a successful substitution is to be able to recognize the integral as an expression of the type

\displaystyle \int \left( \begin{matrix}

\text{an expression}\\ \text{in u} \end{matrix}\right)\cdot u'\,dx\,,

where \displaystyle u=u(x) is the actual substitution. In the integral

\displaystyle \int 2x\sin x^2\,dx

we see that the expression \displaystyle x^2 is the argument for the sine function, as the same time as its derivative \displaystyle \bigl(x^2\bigr)'=2x stands as a factor in front of sine. Therefore, if we set \displaystyle u=x^2, the integral, the integral will be of the form

\displaystyle \int u'\sin u\,dx\,\textrm{.}

Thus, we can use \displaystyle u=x^2 for the substitution,

\displaystyle \begin{align}

\int 2x\sin x^2\,dx &=\left\{\begin{align} u &= x^2\\[5pt] du &= 2x\,dx \end{align}\right\} = \int{\sin u\,du}\\[5pt] &= -\cos u+C = -\cos x^2 + C\,\textrm{.} \end{align}