Lösung 2.2:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 11: Zeile 11:
-
<math>du=\left( \text{3}x+\text{1} \right)^{1}\,dx=3\,dx</math>
+
<math>du=\left( \text{3}x+\text{1} \right)^{\prime }\,dx=3\,dx</math>

Version vom 12:39, 20. Okt. 2008

If we focus on the integrand, then the substitution \displaystyle u=\text{3}x+\text{1} seems suitable, since we then get \displaystyle \sqrt{u} which we can integrate. There is also no risk involved in using a linear substitution such as \displaystyle u=\text{3}x+\text{1}, because the relation between \displaystyle dx\text{ } and \displaystyle du will be a constant factor,


\displaystyle du=\left( \text{3}x+\text{1} \right)^{\prime }\,dx=3\,dx


which does not cause any problems.

We obtain


\displaystyle \begin{align} & \int\limits_{0}^{5}{\sqrt{3x+1}}\,dx=\left\{ \begin{matrix} u=\text{3}x+\text{1} \\ du=3\,dx \\ \end{matrix} \right\}=\frac{1}{3}\int\limits_{1}^{16}{\sqrt{u}}\,du \\ & =\frac{1}{3}\int\limits_{1}^{16}{u^{{1}/{2}\;}}\,du=\frac{1}{3}\left[ \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right]_{1}^{16} \\ & =\frac{1}{3}\left[ \frac{2}{3}u\sqrt{u} \right]_{1}^{16}=\frac{2}{9}\left( 16\sqrt{16}-1\sqrt{1} \right) \\ & =\frac{2}{9}\left( 16\centerdot 4-1 \right)=\frac{2\centerdot 63}{9}=14 \\ \end{align}