Lösung 2.1:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
By dividing the two terms in the numerator by
+
By dividing the two terms in the numerator by <math>x</math>, we can simplify each term to a form which makes it possible simply to write down the primitive functions of the integrand,
-
<math>x</math>, we can simplify each term to a form which makes it possible simply to write down the primitive functions of the integrand:
+
 +
{{Displayed math||<math>\begin{align}
 +
\int \frac{x^{2}+1}{x}\,dx
 +
&= \int \Bigl(\frac{x^2}{x} + \frac{1}{x}\Bigr)\,dx\\[5pt]
 +
&= \int \bigl(x+x^{-1}\bigr)\,dx\\[5pt]
 +
&= \frac{x^2}{2} + \ln |x| + C\,,
 +
\end{align}</math>}}
-
<math>\begin{align}
+
where <math>C</math> is an arbitrary constant.
-
& \int{\frac{x^{2}+1}{x}}\,dx=\int{\left( \frac{x^{2}}{x}+\frac{1}{x} \right)}\,dx \\
+
-
& =\int{\left( x+x^{-1} \right)}\,dx \\
+
-
& =\frac{x^{2}}{2}+\ln \left| x \right|+C \\
+
-
\end{align}</math>
+
-
where
+
Note: Observe that <math>1/x</math> has a singularity at <math>x=0</math>, so the answers above are only primitive functions over intervals that do not contain <math>x=0\,</math>.
-
<math>C</math>
+
-
is an arbitrary constant.
+
-
 
+
-
NOTE: observe that
+
-
<math>\frac{1}{x}</math>
+
-
has a singularity at
+
-
<math>x=0</math>, so the answers above are only primitive functions over intervals that do not contain
+
-
<math>x=0</math>.
+

Version vom 13:23, 21. Okt. 2008

By dividing the two terms in the numerator by \displaystyle x, we can simplify each term to a form which makes it possible simply to write down the primitive functions of the integrand,

\displaystyle \begin{align}

\int \frac{x^{2}+1}{x}\,dx &= \int \Bigl(\frac{x^2}{x} + \frac{1}{x}\Bigr)\,dx\\[5pt] &= \int \bigl(x+x^{-1}\bigr)\,dx\\[5pt] &= \frac{x^2}{2} + \ln |x| + C\,, \end{align}

where \displaystyle C is an arbitrary constant.


Note: Observe that \displaystyle 1/x has a singularity at \displaystyle x=0, so the answers above are only primitive functions over intervals that do not contain \displaystyle x=0\,.