Lösung 2.1:2c
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we recall that | + | If we recall that <math>\sqrt{x} = x^{1/2}</math>, the integral can be written as |
- | <math>\sqrt{x}=x^ | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx | ||
+ | &= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt] | ||
+ | &= \int\limits_{4}^{9}\bigl(x^{1/2} - x^{-1/2}\bigr)\,dx\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | This is a standard integral in which the integrand consists of two terms looking like <math>x^n</math>, where <math>n=1/2</math> and <math>n=-1/2\,</math>, respectively. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | This is a standard integral in which the integrand consists of two terms looking like | + | |
- | <math>x^ | + | |
- | <math>n= | + | |
- | and | + | |
- | <math>n=- | + | |
We obtain | We obtain | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx |
- | + | &= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt] | |
- | & =\ | + | &= \Bigl[\ \frac{x^{1+1/2}}{3/2} - \frac{x^{1/2}}{1/2}\ \Bigr]_{4}^{9}\\[5pt] |
- | & =\ | + | &= \Bigl[\ \frac{2}{3}x\sqrt{x} - 2\sqrt{x}\ \Bigr]_{4}^{9}\\[5pt] |
- | & =\frac{2}{3}\ | + | &= \frac{2}{3}\cdot 9\cdot\sqrt{9} - 2\sqrt{9} - \Bigl(\frac{2}{3}\cdot 4\cdot \sqrt{4}-2\sqrt{4} \Bigr)\\[5pt] |
- | & =\frac{2}{3} | + | &= \frac{2}{3}\cdot 9\cdot 3 - 2\cdot 3 - \Bigl( \frac{2}{3}\cdot 4\cdot 2 - 2\cdot 2 \Bigr)\\[5pt] |
- | & =18-6-\frac{16}{3}+4=16-\frac{16}{3} \\ | + | &= 18-6-\frac{16}{3}+4\\[5pt] |
- | & =\frac{16\ | + | &= 16-\frac{16}{3}\\[5pt] |
- | \end{align}</math> | + | &= \frac{16\cdot 3-16}{3}\\[5pt] |
+ | &= \frac{32}{3}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 12:59, 21. Okt. 2008
If we recall that \displaystyle \sqrt{x} = x^{1/2}, the integral can be written as
\displaystyle \begin{align}
\int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx &= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt] &= \int\limits_{4}^{9}\bigl(x^{1/2} - x^{-1/2}\bigr)\,dx\,\textrm{.} \end{align} |
This is a standard integral in which the integrand consists of two terms looking like \displaystyle x^n, where \displaystyle n=1/2 and \displaystyle n=-1/2\,, respectively.
We obtain
\displaystyle \begin{align}
\int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx &= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt] &= \Bigl[\ \frac{x^{1+1/2}}{3/2} - \frac{x^{1/2}}{1/2}\ \Bigr]_{4}^{9}\\[5pt] &= \Bigl[\ \frac{2}{3}x\sqrt{x} - 2\sqrt{x}\ \Bigr]_{4}^{9}\\[5pt] &= \frac{2}{3}\cdot 9\cdot\sqrt{9} - 2\sqrt{9} - \Bigl(\frac{2}{3}\cdot 4\cdot \sqrt{4}-2\sqrt{4} \Bigr)\\[5pt] &= \frac{2}{3}\cdot 9\cdot 3 - 2\cdot 3 - \Bigl( \frac{2}{3}\cdot 4\cdot 2 - 2\cdot 2 \Bigr)\\[5pt] &= 18-6-\frac{16}{3}+4\\[5pt] &= 16-\frac{16}{3}\\[5pt] &= \frac{16\cdot 3-16}{3}\\[5pt] &= \frac{32}{3}\,\textrm{.} \end{align} |