Lösung 1.3:6
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we call the radius of the metal can | + | If we call the radius of the metal can ''r'' and its height ''h'', then we can determine the can's volume and area by using the figures below, |
- | + | ||
- | and its height | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \text{Volume} &= \text{(area of the base)}\cdot\text{(height)}\\[5pt] | ||
+ | &= \pi r^2\cdot h\,,\\[10pt] | ||
+ | \text{Area} &= \text{(area of the base)} + \text{(area of the cylindrical surface)}\\[5pt] | ||
+ | &= \pi r^2 + 2\pi rh\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
[[Image:1_3_6_1.gif|center]] | [[Image:1_3_6_1.gif|center]] | ||
+ | The problem can then be formulated as: minimise the can's area, <math>A = \pi r^2 + 2\pi h</math>, whilst at the same time keeping the volume, <math>V = \pi r^2h\,</math>, constant. | ||
- | + | From the formula for the volume, we can make ''h'' the subject, | |
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>h=\frac{V}{\pi r^2}</math>}} | |
- | <math>h</math> | + | |
- | + | ||
+ | and express the area solely in terms of the radius, ''r'', | ||
- | + | {{Displayed math||<math>A = \pi r^2 + 2\pi r\cdot\frac{V}{\pi r^2} = \pi r^2 + \frac{2V}{r}\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>A=\pi r^ | + | |
- | + | ||
The minimisation problem is then: | The minimisation problem is then: | ||
- | + | ::Minimise the area <math>A(r) = \pi r^2 + \frac{2V}{r}</math>, when <math>r>0\,</math>. | |
- | <math>A | + | |
- | + | ||
- | <math>r>0</math>. | + | |
- | The area function | + | The area function <math>A(r)</math> is differentiable for all <math>r>0</math> and the region of definition <math>r>0</math> has no endpoints (<math>r=0</math> does not satisfy <math>r>0</math>), so the function can only assume extreme values at critical points. |
- | <math>A | + | |
- | is differentiable for all | + | |
- | <math>r>0</math> | + | |
- | and the region of definition | + | |
- | <math>r>0</math> | + | |
- | has no endpoints | + | |
- | ( | + | |
- | <math>r=0 | + | |
- | does not satisfy | + | |
- | <math>r>0</math> | + | |
- | ), so the function can only assume extreme values at critical points. | + | |
The derivative is given by | The derivative is given by | ||
- | + | {{Displayed math||<math>A'(r) = 2\pi r - \frac{2V}{r^2}\,,</math>}} | |
- | <math> | + | |
and if we set the derivative equal to zero, so as to obtain the critical points, we get | and if we set the derivative equal to zero, so as to obtain the critical points, we get | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | & 2\pi r-\frac{2V}{r^ | + | & 2\pi r - \frac{2V}{r^2} = 0\quad \Leftrightarrow \quad 2\pi r = \frac{2V}{r^2}\\[5pt] |
- | & \Leftrightarrow \quad r^ | + | &\quad\Leftrightarrow \quad r^3=\frac{V}{\pi}\quad \Leftrightarrow \quad r=\sqrt[\scriptstyle 3]{\frac{V}{\pi}}\,\textrm{.} |
- | \end{align}</math> | + | \end{align}</math>}} |
+ | For this value of ''r'', the second derivative, | ||
+ | {{Displayed math||<math>A''(r) = 2\pi + \frac{4V}{r^3}\,,</math>}} | ||
- | For this value of | ||
- | <math>r</math>, the second derivative, | ||
- | |||
- | |||
- | <math>{A}''\left( r \right)=2\pi +\frac{4V}{r^{3}}</math>, | ||
has the value | has the value | ||
+ | {{Displayed math||<math>A''\bigl(\sqrt[3]{V/\pi}\bigr) = 2\pi + \frac{4V}{V/\pi } = 6\pi > 0\,,</math>}} | ||
- | <math> | + | which shows that <math>r=\sqrt[3]{V/\pi}</math> is a local minimum. |
- | + | Because the region of definition, <math>r>0</math>, is open (the endpoint | |
- | + | <math>r=0\text{ }</math> is not included) and unlimited, we cannot directly say that the area is least when <math>r = \sqrt[3]{V/\pi}\,</math>; it could be the case that area becomes smaller when <math>r\to 0</math> or <math>r\to \infty </math>. In this case, however, the area increases without bound as | |
- | + | <math>r\to 0</math> or <math>r\to \infty </math>, so <math>r=\sqrt[3]{V/\pi}</math> | |
- | + | ||
- | Because the region of definition, | + | |
- | <math>r>0</math>, is open (the endpoint | + | |
- | <math>r=0\text{ }</math> | + | |
- | is not included) and unlimited, we cannot directly say that the area is least when | + | |
- | <math>r=\sqrt[3] | + | |
- | <math>r\to 0</math> | + | |
- | or | + | |
- | <math>r\to \infty </math>. In this case, however, the area increases without bound as | + | |
- | <math>r\to 0</math> | + | |
- | or | + | |
- | <math>r\to \infty </math>, so | + | |
- | <math>r=\sqrt[3] | + | |
really is a global minimum. | really is a global minimum. | ||
- | The metal can has the least area for a given volume | + | The metal can has the least area for a given volume <math>V</math> when |
- | <math>V</math> | + | |
- | when | + | |
- | + | ||
- | + | ||
- | + | ||
- | <math>h=\frac{V}{\pi r^{2}}=\frac{V}{\pi }\ | + | {{Displayed math||<math>\begin{align} |
+ | r &= \sqrt[3]{V/\pi}\,,\quad\text{and}\\[5pt] | ||
+ | h &= \frac{V}{\pi r^{2}} = \frac{V}{\pi}\Bigl(\frac{V}{\pi}\Bigr)^{-2/3} = \Bigl( \frac{V}{\pi}\Bigr)^{1-2/3} = \Bigl(\frac{V}{\pi}\Bigr)^{1/3} = \sqrt[3]{\frac{V}{\pi}}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 10:55, 21. Okt. 2008
If we call the radius of the metal can r and its height h, then we can determine the can's volume and area by using the figures below,
\displaystyle \begin{align}
\text{Volume} &= \text{(area of the base)}\cdot\text{(height)}\\[5pt] &= \pi r^2\cdot h\,,\\[10pt] \text{Area} &= \text{(area of the base)} + \text{(area of the cylindrical surface)}\\[5pt] &= \pi r^2 + 2\pi rh\,\textrm{.} \end{align} |
The problem can then be formulated as: minimise the can's area, \displaystyle A = \pi r^2 + 2\pi h, whilst at the same time keeping the volume, \displaystyle V = \pi r^2h\,, constant.
From the formula for the volume, we can make h the subject,
\displaystyle h=\frac{V}{\pi r^2} |
and express the area solely in terms of the radius, r,
\displaystyle A = \pi r^2 + 2\pi r\cdot\frac{V}{\pi r^2} = \pi r^2 + \frac{2V}{r}\,\textrm{.} |
The minimisation problem is then:
- Minimise the area \displaystyle A(r) = \pi r^2 + \frac{2V}{r}, when \displaystyle r>0\,.
The area function \displaystyle A(r) is differentiable for all \displaystyle r>0 and the region of definition \displaystyle r>0 has no endpoints (\displaystyle r=0 does not satisfy \displaystyle r>0), so the function can only assume extreme values at critical points.
The derivative is given by
\displaystyle A'(r) = 2\pi r - \frac{2V}{r^2}\,, |
and if we set the derivative equal to zero, so as to obtain the critical points, we get
\displaystyle \begin{align}
& 2\pi r - \frac{2V}{r^2} = 0\quad \Leftrightarrow \quad 2\pi r = \frac{2V}{r^2}\\[5pt] &\quad\Leftrightarrow \quad r^3=\frac{V}{\pi}\quad \Leftrightarrow \quad r=\sqrt[\scriptstyle 3]{\frac{V}{\pi}}\,\textrm{.} \end{align} |
For this value of r, the second derivative,
\displaystyle A''(r) = 2\pi + \frac{4V}{r^3}\,, |
has the value
\displaystyle A''\bigl(\sqrt[3]{V/\pi}\bigr) = 2\pi + \frac{4V}{V/\pi } = 6\pi > 0\,, |
which shows that \displaystyle r=\sqrt[3]{V/\pi} is a local minimum.
Because the region of definition, \displaystyle r>0, is open (the endpoint \displaystyle r=0\text{ } is not included) and unlimited, we cannot directly say that the area is least when \displaystyle r = \sqrt[3]{V/\pi}\,; it could be the case that area becomes smaller when \displaystyle r\to 0 or \displaystyle r\to \infty . In this case, however, the area increases without bound as \displaystyle r\to 0 or \displaystyle r\to \infty , so \displaystyle r=\sqrt[3]{V/\pi} really is a global minimum.
The metal can has the least area for a given volume \displaystyle V when
\displaystyle \begin{align}
r &= \sqrt[3]{V/\pi}\,,\quad\text{and}\\[5pt] h &= \frac{V}{\pi r^{2}} = \frac{V}{\pi}\Bigl(\frac{V}{\pi}\Bigr)^{-2/3} = \Bigl( \frac{V}{\pi}\Bigr)^{1-2/3} = \Bigl(\frac{V}{\pi}\Bigr)^{1/3} = \sqrt[3]{\frac{V}{\pi}}\,\textrm{.} \end{align} |