Lösung 1.2:3a
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm, | There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} |
We can carry out the differentiation of <math>\sqrt{x}+\sqrt{x+1}</math> on the right-hand side term by term to obtain | We can carry out the differentiation of <math>\sqrt{x}+\sqrt{x+1}</math> on the right-hand side term by term to obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} |
and it remains then only to differentiate <math>\sqrt{x}</math>, which we do directly, and <math>\sqrt{x+1}</math> (which has a simple inner derivative), | and it remains then only to differentiate <math>\sqrt{x}</math>, which we do directly, and <math>\sqrt{x+1}</math> (which has a simple inner derivative), | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} | \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} | ||
&= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt] | &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt] | ||
Zeile 17: | Zeile 17: | ||
If we rewrite the expression inside the square brackets using a common denominator, we get | If we rewrite the expression inside the square brackets using a common denominator, we get | ||
- | {{ | + | {{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} |
= {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,,}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} | = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,,}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} | ||
and we can then eliminate the factor <math>\sqrt{x+1}+\sqrt{x}</math> from the numerator and denominator to get | and we can then eliminate the factor <math>\sqrt{x+1}+\sqrt{x}</math> from the numerator and denominator to get | ||
- | {{ | + | {{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} |
= {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} | = {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} |
Version vom 12:53, 10. Mär. 2009
There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm,
\displaystyle \frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
We can carry out the differentiation of \displaystyle \sqrt{x}+\sqrt{x+1} on the right-hand side term by term to obtain
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
and it remains then only to differentiate \displaystyle \sqrt{x}, which we do directly, and \displaystyle \sqrt{x+1} (which has a simple inner derivative),
\displaystyle \begin{align}
\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt] &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot 1\Bigr]\,\textrm{.} \end{align} |
If we rewrite the expression inside the square brackets using a common denominator, we get
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
= {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,,}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
and we can then eliminate the factor \displaystyle \sqrt{x+1}+\sqrt{x} from the numerator and denominator to get
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
= {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |