Lösung 1.1:3
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The ball hits the ground when its height is zero, i.e. when | The ball hits the ground when its height is zero, i.e. when | ||
- | {{ | + | {{Abgesetzte Formel||<math>h(t) = 10-\frac{9\textrm{.}82}{2}t^{2} = 0\,\textrm{.}</math>}} |
This quadratic equation has the solutions | This quadratic equation has the solutions | ||
- | {{ | + | {{Abgesetzte Formel||<math>t=\pm\sqrt{\frac{2\cdot 10}{9\textrm{.}82}}\,,</math>}} |
where the positive root is the time when the ball hits the ground. | where the positive root is the time when the ball hits the ground. | ||
Zeile 11: | Zeile 11: | ||
We obtain the ball's speed as a function of time as the time derivative of the height, | We obtain the ball's speed as a function of time as the time derivative of the height, | ||
- | {{ | + | {{Abgesetzte Formel||<math>v(t) = h'(t) = \frac{d}{dt}\,\Bigl(10-\frac{9\textrm{.}82}{2}t^2\Bigr) = -9\textrm{.}82t\,\textrm{.}</math>}} |
If we substitute the time when the ball hits the ground, we obtain the ball's speed at that instant, | If we substitute the time when the ball hits the ground, we obtain the ball's speed at that instant, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
v\Bigl(\sqrt{\frac{2\cdot 10}{9\textrm{.}82}}\,\Bigr) | v\Bigl(\sqrt{\frac{2\cdot 10}{9\textrm{.}82}}\,\Bigr) | ||
&= -9\textrm{.}82\cdot\sqrt{\frac{2\cdot 10}{9\textrm{.}82}}\\[5pt] | &= -9\textrm{.}82\cdot\sqrt{\frac{2\cdot 10}{9\textrm{.}82}}\\[5pt] |
Version vom 12:51, 10. Mär. 2009
The ball hits the ground when its height is zero, i.e. when
\displaystyle h(t) = 10-\frac{9\textrm{.}82}{2}t^{2} = 0\,\textrm{.} |
This quadratic equation has the solutions
\displaystyle t=\pm\sqrt{\frac{2\cdot 10}{9\textrm{.}82}}\,, |
where the positive root is the time when the ball hits the ground.
We obtain the ball's speed as a function of time as the time derivative of the height,
\displaystyle v(t) = h'(t) = \frac{d}{dt}\,\Bigl(10-\frac{9\textrm{.}82}{2}t^2\Bigr) = -9\textrm{.}82t\,\textrm{.} |
If we substitute the time when the ball hits the ground, we obtain the ball's speed at that instant,
\displaystyle \begin{align}
v\Bigl(\sqrt{\frac{2\cdot 10}{9\textrm{.}82}}\,\Bigr) &= -9\textrm{.}82\cdot\sqrt{\frac{2\cdot 10}{9\textrm{.}82}}\\[5pt] &= -\sqrt{9\textrm{.}82^2\cdot\frac{2\cdot 10}{9\textrm{.}82}}\\[5pt] &= \sqrt{9\textrm{.}82\cdot 2\cdot 10}\\[5pt] &= -\sqrt{196\textrm{.}4}\\[5pt] &\approx -14\textrm{.}0\,\textrm{.} \end{align} |
The minus sign indicates that the speed is directed downwards, and the ball's speed is therefore 14.0 m/s.