Lösung 1.1:2e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We expand the quadratic expression as | We expand the quadratic expression as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
f(x) &= \bigl(x^2-1\bigr)^2\\[5pt] | f(x) &= \bigl(x^2-1\bigr)^2\\[5pt] | ||
&= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt] | &= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt] | ||
Zeile 9: | Zeile 9: | ||
When the function is written in this form, it is easy to differentiate term by term, | When the function is written in this form, it is easy to differentiate term by term, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt] | f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt] | ||
&= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt] | &= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt] |
Version vom 12:51, 10. Mär. 2009
We expand the quadratic expression as
\displaystyle \begin{align}
f(x) &= \bigl(x^2-1\bigr)^2\\[5pt] &= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt] &= x^4 - 2x^2 + 1\,\textrm{.} \end{align} |
When the function is written in this form, it is easy to differentiate term by term,
\displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt] &= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt] &= 4\cdot x^{4-1} - 2\cdot 2x^{2-1} + 0\\[5pt] &= 4x^{3} - 4x\\[5pt] &= 4x(x^2-1)\,\textrm{.} \end{align} |