Lösung 1.1:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We differentiate term by term,
We differentiate term by term,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt]
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt]
&= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt]
&= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt]

Version vom 12:50, 10. Mär. 2009

We differentiate term by term,

\displaystyle \begin{align}

f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt] &= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt] &= e^{x}-\frac{1}{x}\,\textrm{.} \end{align}


Note: Because \displaystyle \ln x is not defined for \displaystyle x\le 0 we assume implicitly that \displaystyle x > 0.