Lösung 1.1:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We differentiate term by term:
+
We differentiate term by term,
 +
{{Displayed math||<math>\begin{align}
 +
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt]
 +
&= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt]
 +
&= e^{x}-\frac{1}{x}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
 
-
& {f}'\left( x \right)=\frac{d}{dx}\left( e^{x}-\ln x \right) \\
 
-
& =\frac{d}{dx}e^{x}-\frac{d}{dx}\ln x=e^{x}-\frac{1}{x} \\
 
-
\end{align}</math>
 
-
 
+
Note: Because <math>\ln x</math> is not defined for <math>x\le 0</math> we assume implicitly that <math>x > 0</math>.
-
NOTE: because
+
-
<math>\text{ln }x</math>
+
-
is not defined for
+
-
<math>x\le 0</math>
+
-
we assume implicitly that
+
-
<math>x>0</math>.
+

Version vom 11:52, 14. Okt. 2008

We differentiate term by term,

\displaystyle \begin{align}

f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt] &= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt] &= e^{x}-\frac{1}{x}\,\textrm{.} \end{align}


Note: Because \displaystyle \ln x is not defined for \displaystyle x\le 0 we assume implicitly that \displaystyle x > 0.