Lösung 1.1:2b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | The expression is a sum of two terms which we differentiate one by one | + | The expression is a sum of two terms which we differentiate one by one, |
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | f^{\,\prime}(x) |
- | + | &= \frac{d}{dx}\,\bigl(\cos x-\sin x\bigr)\\[5pt] | |
- | & =\frac{d}{dx}\cos x-\frac{d}{dx}\sin x=-\sin x-\cos x \\ | + | &= \frac{d}{dx}\,\cos x - \frac{d}{dx}\,\sin x\\[5pt] |
- | \end{align}</math> | + | &= -\sin x-\cos x\,\textrm{.} |
+ | \end{align}</math>}} |
Version vom 11:47, 14. Okt. 2008
The expression is a sum of two terms which we differentiate one by one,
\displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(\cos x-\sin x\bigr)\\[5pt] &= \frac{d}{dx}\,\cos x - \frac{d}{dx}\,\sin x\\[5pt] &= -\sin x-\cos x\,\textrm{.} \end{align} |