Lösung 1.1:2a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
By using the rule for differentiation | By using the rule for differentiation | ||
| + | {{Displayed math||<math>\frac{d}{dx}\,x^{n}=nx^{n-1}</math>}} | ||
| - | + | and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain | |
| - | + | {{Displayed math||<math>\begin{align} | |
| - | + | f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^2-3x+1\bigr)\\[5pt] | |
| - | + | &= \frac{d}{dx}\,x^2 - 3\frac{d}{dx}\,x^1 + \frac{d}{dx}\,1\\[5pt] | |
| - | + | &= 2x^{2-1} - 3\cdot 1x^{1-1} + 0\\[5pt] | |
| - | <math>\begin{align} | + | &= 2x-3\,\textrm{.} |
| - | + | \end{align}</math>}} | |
| - | & =2x^{2-1}-3\ | + | |
| - | \end{align}</math> | + | |
Version vom 11:45, 14. Okt. 2008
By using the rule for differentiation
| \displaystyle \frac{d}{dx}\,x^{n}=nx^{n-1} |
and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain
| \displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^2-3x+1\bigr)\\[5pt] &= \frac{d}{dx}\,x^2 - 3\frac{d}{dx}\,x^1 + \frac{d}{dx}\,1\\[5pt] &= 2x^{2-1} - 3\cdot 1x^{1-1} + 0\\[5pt] &= 2x-3\,\textrm{.} \end{align} |
