Lösung 3.1:4f
Aus Online Mathematik Brückenkurs 2
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{NAVCONTENT_START}} | ||
Because the equation contains both <math>z</math> and <math>\bar{z}</math>, we cannot use <math>z</math> (or <math>\bar{z}</math>) alone as an unknown, so we are forced to set | Because the equation contains both <math>z</math> and <math>\bar{z}</math>, we cannot use <math>z</math> (or <math>\bar{z}</math>) alone as an unknown, so we are forced to set | ||
| - | + | {{Displayed math||<math>z=x+iy</math>}} | |
| - | <math>z=x+iy</math> | + | |
| - | + | ||
and use the real part <math>x</math> and the imaginary part <math>y</math> as unknowns. | and use the real part <math>x</math> and the imaginary part <math>y</math> as unknowns. | ||
| Zeile 10: | Zeile 7: | ||
With this approach, the left-hand side of the equation becomes | With this approach, the left-hand side of the equation becomes | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>(1+i)(x-iy)+i(x+iy) | + | (1+i)(x-iy)+i(x+iy) |
| - | + | &= 1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\[5pt] | |
| - | + | &= x-iy+ix+y+ix-y\\[5pt] | |
| - | + | &= x+(2x-y)i | |
| - | &=x-iy+ix+y+ix-y\\ | + | \end{align}</math>}} |
| - | &=x+(2x-y)i\end{align}</math> | + | |
| - | + | ||
and the whole equation becomes | and the whole equation becomes | ||
| - | + | {{Displayed math||<math>x+(2x-y)i=3+5i\,\textrm{.}</math>}} | |
| - | <math>x+(2x-y)i=3+5i</math> | + | |
| - | + | ||
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e. | The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e. | ||
| - | + | {{Displayed math||<math>\left\{\begin{align}x\phantom{{}-y}{}&=3\,,\\[5pt] 2x-y&=5\,\textrm{.}\end{align}\right.</math>}} | |
| - | <math>\begin{ | + | |
| - | + | ||
This gives <math>x=3</math> and <math>y=2x-5=2\cdot 3-5=1</math>. Thus, the equation has the solution <math>z=3+i</math>. | This gives <math>x=3</math> and <math>y=2x-5=2\cdot 3-5=1</math>. Thus, the equation has the solution <math>z=3+i</math>. | ||
| - | A quick check shows that <math>z=3+i</math> satisfies the equation in the exercise | + | A quick check shows that <math>z=3+i</math> satisfies the equation in the exercise, |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| + | \text{LHS} | ||
| + | &= (1+i)\bar{z}+iz\\[5pt] | ||
| + | &= (1+i)(3-i)+i(3+i)\\[5pt] | ||
| + | &= 3-i+3i+1+3i-1\\[5pt] | ||
| + | &= 3+5i\\[5pt] | ||
| + | &= \text{RHS}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Version vom 08:30, 30. Okt. 2008
Because the equation contains both \displaystyle z and \displaystyle \bar{z}, we cannot use \displaystyle z (or \displaystyle \bar{z}) alone as an unknown, so we are forced to set
| \displaystyle z=x+iy |
and use the real part \displaystyle x and the imaginary part \displaystyle y as unknowns.
With this approach, the left-hand side of the equation becomes
| \displaystyle \begin{align}
(1+i)(x-iy)+i(x+iy) &= 1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\[5pt] &= x-iy+ix+y+ix-y\\[5pt] &= x+(2x-y)i \end{align} |
and the whole equation becomes
| \displaystyle x+(2x-y)i=3+5i\,\textrm{.} |
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e.
| \displaystyle \left\{\begin{align}x\phantom{{}-y}{}&=3\,,\\[5pt] 2x-y&=5\,\textrm{.}\end{align}\right. |
This gives \displaystyle x=3 and \displaystyle y=2x-5=2\cdot 3-5=1. Thus, the equation has the solution \displaystyle z=3+i.
A quick check shows that \displaystyle z=3+i satisfies the equation in the exercise,
| \displaystyle \begin{align}
\text{LHS} &= (1+i)\bar{z}+iz\\[5pt] &= (1+i)(3-i)+i(3+i)\\[5pt] &= 3-i+3i+1+3i-1\\[5pt] &= 3+5i\\[5pt] &= \text{RHS}\,\textrm{.} \end{align} |
