Lösung 3.1:1e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | + | A suitable first step can be to work out the square term, <math>(2-i)^2</math>, by expanding it, | |
- | A suitable first step can be to work out the square term, <math>(2-i)^2</math>, | + | |
- | + | ||
- | + | ||
- | + | ||
- | {{ | + | {{Displayed math||<math>\begin{align} |
- | After that, we calculate the remaining product | + | (2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] |
- | {{ | + | &= 4-4i+i^2\\[5pt] |
- | <math>\begin{align}(1+i)(3-4i)&=1\cdot3-1\cdot 4i +i \cdot 3 - i\cdot 4i\\ | + | &= 4-4i-1\\[5pt] |
- | &=3-4i+3i-4i^2\\ | + | &= 3-4i\,\textrm{.} |
- | &=3+(-4+3)i-4\cdot (-1)\\ | + | \end{align}</math>}} |
- | &=3-i+4\\ | + | |
- | &=7-i.\end{align}</math> | + | After that, we calculate the remaining product, |
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | (1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] | ||
+ | &= 3-4i+3i-4i^2\\[5pt] | ||
+ | &= 3+(-4+3)i-4\cdot (-1)\\[5pt] | ||
+ | &= 3-i+4\\[5pt] | ||
+ | &= 7-i\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 15:00, 29. Okt. 2008
A suitable first step can be to work out the square term, \displaystyle (2-i)^2, by expanding it,
\displaystyle \begin{align}
(2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] &= 4-4i+i^2\\[5pt] &= 4-4i-1\\[5pt] &= 3-4i\,\textrm{.} \end{align} |
After that, we calculate the remaining product,
\displaystyle \begin{align}
(1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] &= 3-4i+3i-4i^2\\[5pt] &= 3+(-4+3)i-4\cdot (-1)\\[5pt] &= 3-i+4\\[5pt] &= 7-i\,\textrm{.} \end{align} |