Lösung 3.1:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | {{NAVCONTENT_START}} | ||
Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that <math>i^2=-1</math>. The distributivity rule gives that | Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that <math>i^2=-1</math>. The distributivity rule gives that | ||
- | <math>\begin{align}i(2+3i)&=i\cdot 2+i\cdot 3i=2i+3i^2\\ | + | {{Displayed math||<math>\begin{align} |
- | &=2i+3\cdot (-1)=2i-3\\ | + | i(2+3i) |
- | &=-3+2i\end{align}</math> | + | &= i\cdot 2 + i\cdot 3i\\[5pt] |
- | + | &= 2i+3i^2\\[5pt] | |
+ | &= 2i+3\cdot (-1)\\[5pt] | ||
+ | &= 2i-3\\[5pt] | ||
+ | &= -3+2i\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 14:49, 29. Okt. 2008
Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that \displaystyle i^2=-1. The distributivity rule gives that
\displaystyle \begin{align}
i(2+3i) &= i\cdot 2 + i\cdot 3i\\[5pt] &= 2i+3i^2\\[5pt] &= 2i+3\cdot (-1)\\[5pt] &= 2i-3\\[5pt] &= -3+2i\,\textrm{.} \end{align} |