Lösung 3.3:4b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:4b moved to Solution 3.3:4b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Typically, one solves a second-degree by completing the square, followed by taking the root.
-
<center> [[Image:3_3_4b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
If we complete the square of the left-hand side, we get
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( z-2 \right)^{2}-2^{2}+5=0, \\
 +
& \left( z-2 \right)^{2}+1=0. \\
 +
\end{align}</math>
 +
 
 +
 
 +
Taking the root then gives that the equation has roots
 +
<math>z-2=\pm i,</math>
 +
i.e.
 +
<math>z=\text{2}+i</math>
 +
and
 +
<math>z=\text{2}-i</math>.
 +
 
 +
If we want to be sure that we have found the correct solutions, we can substitute each solution into the equation and see whether the equation is satisfied.
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=\text{2}+i:\quad z^{2}-4z+5=\left( \text{2}+i \right)^{2}-4\left( \text{2}+i \right)+5 \\
 +
& =2^{2}+4i+i^{2}-8-4i+5 \\
 +
& =4+4i-1-8-4i+5=0 \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=\text{2-}i:\quad z^{2}-4z+5=\left( \text{2-}i \right)^{2}-4\left( \text{2-}i \right)+5 \\
 +
& =2^{2}-4i+i^{2}-8+4i+5 \\
 +
& =4-4i-1-8+4i+5=0 \\
 +
\end{align}</math>

Version vom 09:48, 25. Okt. 2008

Typically, one solves a second-degree by completing the square, followed by taking the root.

If we complete the square of the left-hand side, we get


\displaystyle \begin{align} & \left( z-2 \right)^{2}-2^{2}+5=0, \\ & \left( z-2 \right)^{2}+1=0. \\ \end{align}


Taking the root then gives that the equation has roots \displaystyle z-2=\pm i, i.e. \displaystyle z=\text{2}+i and \displaystyle z=\text{2}-i.

If we want to be sure that we have found the correct solutions, we can substitute each solution into the equation and see whether the equation is satisfied.


\displaystyle \begin{align} & z=\text{2}+i:\quad z^{2}-4z+5=\left( \text{2}+i \right)^{2}-4\left( \text{2}+i \right)+5 \\ & =2^{2}+4i+i^{2}-8-4i+5 \\ & =4+4i-1-8-4i+5=0 \\ \end{align}



\displaystyle \begin{align} & z=\text{2-}i:\quad z^{2}-4z+5=\left( \text{2-}i \right)^{2}-4\left( \text{2-}i \right)+5 \\ & =2^{2}-4i+i^{2}-8+4i+5 \\ & =4-4i-1-8+4i+5=0 \\ \end{align}