Lösung 3.3:3d
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:3d moved to Solution 3.3:3d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Before we can complete the square of the expression, we need to take out the factor |
- | < | + | <math>i</math> |
- | {{ | + | in front of |
+ | <math>z^{2}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>i\left( z^{2}+\frac{2+3i}{i}z-\frac{1}{i} \right).</math> | ||
+ | |||
+ | |||
+ | Then, simplify the complex fractions by multiplying top and bottom by | ||
+ | <math>-i</math> | ||
+ | (the denominator's complex conjugate): | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & i\left( z^{2}+\frac{\left( 2+3i \right)\centerdot \left( -i \right)}{i\centerdot \left( -i \right)}z-\frac{1\centerdot \left( -i \right)}{i\centerdot \left( -i \right)} \right) \\ | ||
+ | & =i\left( z^{2}+\frac{-2i+3}{1}z-\frac{-i}{1} \right) \\ | ||
+ | & =i\left( z^{2}+\left( 3-2i \right)z+i \right). \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Now we are ready to complete the square of the second-degree expression inside the bracket: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & i\left( z^{2}+\left( 3-2i \right)z+i \right)=i\left( \left( z+\frac{3-2i}{2} \right)^{2}-\left( \frac{3-2i}{2} \right)^{2}+i \right) \\ | ||
+ | & =i\left( \left( z+\frac{3}{2}-i \right)^{2}-\left( \frac{3}{2}-i \right)^{2}+i \right) \\ | ||
+ | & =i\left( \left( z+\frac{3}{2}-i \right)^{2}-\frac{9}{4}+3i+1+i \right) \\ | ||
+ | & =i\left( \left( z+\frac{3}{2}-i \right)^{2}-\frac{5}{4}+4i \right) \\ | ||
+ | & =\left( z+\frac{3}{2}-i \right)^{2}-\frac{5}{4}i+4i^{2} \\ | ||
+ | & =\left( z+\frac{3}{2}-i \right)^{2}-4-\frac{5}{4}i. \\ | ||
+ | \end{align}</math> |
Version vom 09:05, 25. Okt. 2008
Before we can complete the square of the expression, we need to take out the factor \displaystyle i in front of \displaystyle z^{2}
\displaystyle i\left( z^{2}+\frac{2+3i}{i}z-\frac{1}{i} \right).
Then, simplify the complex fractions by multiplying top and bottom by
\displaystyle -i
(the denominator's complex conjugate):
\displaystyle \begin{align}
& i\left( z^{2}+\frac{\left( 2+3i \right)\centerdot \left( -i \right)}{i\centerdot \left( -i \right)}z-\frac{1\centerdot \left( -i \right)}{i\centerdot \left( -i \right)} \right) \\
& =i\left( z^{2}+\frac{-2i+3}{1}z-\frac{-i}{1} \right) \\
& =i\left( z^{2}+\left( 3-2i \right)z+i \right). \\
\end{align}
Now we are ready to complete the square of the second-degree expression inside the bracket:
\displaystyle \begin{align}
& i\left( z^{2}+\left( 3-2i \right)z+i \right)=i\left( \left( z+\frac{3-2i}{2} \right)^{2}-\left( \frac{3-2i}{2} \right)^{2}+i \right) \\
& =i\left( \left( z+\frac{3}{2}-i \right)^{2}-\left( \frac{3}{2}-i \right)^{2}+i \right) \\
& =i\left( \left( z+\frac{3}{2}-i \right)^{2}-\frac{9}{4}+3i+1+i \right) \\
& =i\left( \left( z+\frac{3}{2}-i \right)^{2}-\frac{5}{4}+4i \right) \\
& =\left( z+\frac{3}{2}-i \right)^{2}-\frac{5}{4}i+4i^{2} \\
& =\left( z+\frac{3}{2}-i \right)^{2}-4-\frac{5}{4}i. \\
\end{align}