Lösung 3.3:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:3a moved to Solution 3.3:3a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
When we complete the square of the second degree expression,
-
<center> [[Image:3_3_3a.gif]] </center>
+
<math>z^{2}+2z+3</math>
-
{{NAVCONTENT_STOP}}
+
we start with the squaring rule
 +
 
 +
 
 +
<math>\left( z+a \right)^{2}=z^{2}+2az+a^{2}</math>
 +
 
 +
 
 +
which we write as
 +
 
 +
 
 +
<math>\left( z+a \right)^{2}-a^{2}=z^{2}+2az</math>
 +
 
 +
 
 +
and adapt the constant to be
 +
<math>a=\text{1 }</math>
 +
so that the terms
 +
<math>z^{2}+2z</math>
 +
are equal to
 +
<math>z^{2}+2az</math>,, and therefore can be written as
 +
<math>\left( z+1 \right)^{2}-1^{2}</math>. The whole calculation becomes
 +
 
 +
 
 +
<math>\underline{z^{2}+2z}+3=\underline{\left( z+1 \right)^{2}-1^{2}}+3=\left( z+1 \right)^{2}+2</math>
 +
 
 +
 
 +
The underline terms show the actual completion of the square.

Version vom 08:31, 25. Okt. 2008

When we complete the square of the second degree expression, \displaystyle z^{2}+2z+3 we start with the squaring rule


\displaystyle \left( z+a \right)^{2}=z^{2}+2az+a^{2}


which we write as


\displaystyle \left( z+a \right)^{2}-a^{2}=z^{2}+2az


and adapt the constant to be \displaystyle a=\text{1 } so that the terms \displaystyle z^{2}+2z are equal to \displaystyle z^{2}+2az,, and therefore can be written as \displaystyle \left( z+1 \right)^{2}-1^{2}. The whole calculation becomes


\displaystyle \underline{z^{2}+2z}+3=\underline{\left( z+1 \right)^{2}-1^{2}}+3=\left( z+1 \right)^{2}+2


The underline terms show the actual completion of the square.