Lösung 3.3:2d
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:2d moved to Solution 3.3:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we use |
- | < | + | <math>w=z-\text{1}</math> |
- | {{ | + | as a new unknown and move the term |
- | {{ | + | <math>\text{4}</math> |
- | < | + | over to the right-hand side, we have a binomial equation, |
- | {{ | + | |
+ | |||
+ | <math>w^{4}=-4</math> | ||
+ | |||
+ | |||
+ | We can solve this equation in the usual way by using polar form and de Moivre's formula. We have | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & w=r\left( \cos \alpha +i\sin \alpha \right) \\ | ||
+ | & -4=4\left( \cos \pi +i\sin \pi \right) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and the equation becomes | ||
+ | |||
+ | |||
+ | <math>r^{4}\left( \cos 4\alpha +i\sin 4\alpha \right)=4\left( \cos \pi +i\sin \pi \right)</math> | ||
+ | |||
+ | |||
+ | The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of | ||
+ | <math>2\pi </math>, | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | r^{4}=4 \\ | ||
+ | 4\alpha =\pi +2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | which gives us that | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | r=\sqrt[4]{2}=\sqrt{2} \\ | ||
+ | \alpha =\frac{\pi }{4}+\frac{n\pi }{2}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | for | ||
+ | <math>n=0,\ 1,\ 2</math> | ||
+ | and | ||
+ | <math>3</math>, the argument | ||
+ | <math>\alpha </math> | ||
+ | assumes the four different values | ||
+ | |||
+ | |||
+ | <math>\frac{\pi }{4},\ \frac{3\pi }{4},\ \frac{5\pi }{4}</math> | ||
+ | and | ||
+ | <math>\frac{7\pi }{4}</math> | ||
+ | |||
+ | |||
+ | and for different values of | ||
+ | <math>n</math> | ||
+ | we obtain values of | ||
+ | <math>\alpha </math> | ||
+ | which are equal to those above, apart from multiples of | ||
+ | <math>2\pi </math>. Thus, we have four solutions, | ||
+ | |||
+ | |||
+ | <math>w=\left\{ \begin{array}{*{35}l} | ||
+ | \sqrt{2}\left( \cos {\pi }/{4}\;+i\sin {\pi }/{4}\; \right) \\ | ||
+ | \sqrt{2}\left( \cos {3\pi }/{4}\;+i\sin 3{\pi }/{4}\; \right) \\ | ||
+ | \sqrt{2}\left( \cos {5\pi }/{4}\;+i\sin 5{\pi }/{4}\; \right) \\ | ||
+ | \sqrt{2}\left( \cos 7{\pi }/{4}\;+i\sin 7{\pi }/{4}\; \right) \\ | ||
+ | \end{array} \right.=\left\{ \begin{array}{*{35}l} | ||
+ | 1+i \\ | ||
+ | -1+i \\ | ||
+ | -1-i \\ | ||
+ | 1-i \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | and the original variable z is | ||
+ | |||
+ | |||
+ | <math>z=\left\{ \begin{array}{*{35}l} | ||
+ | 2+i \\ | ||
+ | i \\ | ||
+ | -i \\ | ||
+ | 2-i \\ | ||
+ | \end{array} \right.</math> |
Version vom 10:54, 24. Okt. 2008
If we use \displaystyle w=z-\text{1} as a new unknown and move the term \displaystyle \text{4} over to the right-hand side, we have a binomial equation,
\displaystyle w^{4}=-4
We can solve this equation in the usual way by using polar form and de Moivre's formula. We have
\displaystyle \begin{align}
& w=r\left( \cos \alpha +i\sin \alpha \right) \\
& -4=4\left( \cos \pi +i\sin \pi \right) \\
\end{align}
and the equation becomes
\displaystyle r^{4}\left( \cos 4\alpha +i\sin 4\alpha \right)=4\left( \cos \pi +i\sin \pi \right)
The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of
\displaystyle 2\pi ,
\displaystyle \left\{ \begin{array}{*{35}l}
r^{4}=4 \\
4\alpha =\pi +2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
\end{array} \right.
which gives us that
\displaystyle \left\{ \begin{array}{*{35}l}
r=\sqrt[4]{2}=\sqrt{2} \\
\alpha =\frac{\pi }{4}+\frac{n\pi }{2}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
\end{array} \right.
for
\displaystyle n=0,\ 1,\ 2
and
\displaystyle 3, the argument
\displaystyle \alpha
assumes the four different values
\displaystyle \frac{\pi }{4},\ \frac{3\pi }{4},\ \frac{5\pi }{4}
and
\displaystyle \frac{7\pi }{4}
and for different values of
\displaystyle n
we obtain values of
\displaystyle \alpha
which are equal to those above, apart from multiples of
\displaystyle 2\pi . Thus, we have four solutions,
\displaystyle w=\left\{ \begin{array}{*{35}l}
\sqrt{2}\left( \cos {\pi }/{4}\;+i\sin {\pi }/{4}\; \right) \\
\sqrt{2}\left( \cos {3\pi }/{4}\;+i\sin 3{\pi }/{4}\; \right) \\
\sqrt{2}\left( \cos {5\pi }/{4}\;+i\sin 5{\pi }/{4}\; \right) \\
\sqrt{2}\left( \cos 7{\pi }/{4}\;+i\sin 7{\pi }/{4}\; \right) \\
\end{array} \right.=\left\{ \begin{array}{*{35}l}
1+i \\
-1+i \\
-1-i \\
1-i \\
\end{array} \right.
and the original variable z is
\displaystyle z=\left\{ \begin{array}{*{35}l}
2+i \\
i \\
-i \\
2-i \\
\end{array} \right.