Lösung 3.1:4c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.1:4c moved to Solution 3.1:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | < | + | If we subtract <math>2z</math> from both sides, |
+ | |||
+ | |||
+ | <math>iz+2-2z=-3</math> | ||
+ | |||
+ | |||
+ | and then subtract <math>2</math> from both sides, we have <math>z</math> terms left only on the left-hand side, | ||
+ | |||
+ | |||
+ | <math>iz-2z=-3-2</math> | ||
+ | |||
+ | |||
+ | After taking out a factor <math>z</math> from the left-hand side, | ||
+ | |||
+ | |||
+ | <math>(i-2)z=-5</math> | ||
+ | |||
+ | |||
+ | we obtain, after dividing by <math>-2+i</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align}z&=\frac{-5}{-2+i}=\frac{-5(-2-i)}{(-2+i)(-2-i)}=\frac{(-5)\cdot(-2)-5\cdot(-i)}{(-2)^2-i^2}\\ | ||
+ | &=\frac{10+5i}{4+1}=\frac{10+5i}{5}=2+i.\end{align}</math> | ||
+ | |||
+ | |||
+ | A quick check shows that <math>z=2+i</math> satisfies the original equation | ||
+ | |||
+ | |||
+ | <math>\begin{align}LHS &= iz+2=i(2+i)+2=2i-1+2=1+2i\\ | ||
+ | RHS &= 2z-3 = 2(2+i)-3=4+2i-3=1+2i.\end{align}</math> | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 10:51, 23. Sep. 2008
If we subtract \displaystyle 2z from both sides,
\displaystyle iz+2-2z=-3
and then subtract \displaystyle 2 from both sides, we have \displaystyle z terms left only on the left-hand side,
\displaystyle iz-2z=-3-2
After taking out a factor \displaystyle z from the left-hand side,
\displaystyle (i-2)z=-5
we obtain, after dividing by \displaystyle -2+i,
\displaystyle \begin{align}z&=\frac{-5}{-2+i}=\frac{-5(-2-i)}{(-2+i)(-2-i)}=\frac{(-5)\cdot(-2)-5\cdot(-i)}{(-2)^2-i^2}\\
&=\frac{10+5i}{4+1}=\frac{10+5i}{5}=2+i.\end{align}
A quick check shows that \displaystyle z=2+i satisfies the original equation
\displaystyle \begin{align}LHS &= iz+2=i(2+i)+2=2i-1+2=1+2i\\
RHS &= 2z-3 = 2(2+i)-3=4+2i-3=1+2i.\end{align}