Lösung 3.1:1f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:1f moved to Solution 3.1:1f: Robot: moved page)
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Image:3_1_1f.gif]] </center>
+
Let's begin by calculating some powers of i:
 +
 
 +
<math>\begin{align}i^2&=i\cdot i=-1,\\
 +
i^3&=i^2\cdot i = (-1)\cdot i = -i,\\
 +
i^4&=i^2\cdot i^2 = (-1)\cdot (-1) = 1.\end{align}</math>
 +
 
 +
Now, we observe that because <math>i^4=1</math>, we can try to factorize <math>i^{11}</math> and <math>i^{20}</math> in terms of <math>i^4</math>,
 +
 
 +
<math>\begin{align}i^2&=i\cdot i=-1,\\
 +
i^{11}&=i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i)=-i\\
 +
i^{20}&=i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1=1\end{align}</math>
 +
 
 +
The answer becomes
 +
 
 +
<math>i^{20}+i^{11}=1-i</math>
 +
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 12:05, 18. Sep. 2008