Lösung 3.1:1f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.1:1f moved to Solution 3.1:1f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | < | + | Let's begin by calculating some powers of i: |
+ | |||
+ | <math>\begin{align}i^2&=i\cdot i=-1,\\ | ||
+ | i^3&=i^2\cdot i = (-1)\cdot i = -i,\\ | ||
+ | i^4&=i^2\cdot i^2 = (-1)\cdot (-1) = 1.\end{align}</math> | ||
+ | |||
+ | Now, we observe that because <math>i^4=1</math>, we can try to factorize <math>i^{11}</math> and <math>i^{20}</math> in terms of <math>i^4</math>, | ||
+ | |||
+ | <math>\begin{align}i^2&=i\cdot i=-1,\\ | ||
+ | i^{11}&=i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i)=-i\\ | ||
+ | i^{20}&=i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1=1\end{align}</math> | ||
+ | |||
+ | The answer becomes | ||
+ | |||
+ | <math>i^{20}+i^{11}=1-i</math> | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 12:05, 18. Sep. 2008
Let's begin by calculating some powers of i:
\displaystyle \begin{align}i^2&=i\cdot i=-1,\\ i^3&=i^2\cdot i = (-1)\cdot i = -i,\\ i^4&=i^2\cdot i^2 = (-1)\cdot (-1) = 1.\end{align}
Now, we observe that because \displaystyle i^4=1, we can try to factorize \displaystyle i^{11} and \displaystyle i^{20} in terms of \displaystyle i^4,
\displaystyle \begin{align}i^2&=i\cdot i=-1,\\ i^{11}&=i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i)=-i\\ i^{20}&=i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1=1\end{align}
The answer becomes
\displaystyle i^{20}+i^{11}=1-i