Lösung 2.3:2b
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.3:2b moved to Solution 2.3:2b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We have a product of two factors in the integrand, so a partial integration does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate |
- | < | + | <math>x^{\text{3}}</math> |
- | {{ | + | (so as to reduce its exponent by |
- | {{ | + | <math>\text{1}</math>), we need to find a primitive function for |
- | < | + | <math>e^{x^{2}}</math>, and how do we do that? If, on the other hand, we integrate |
- | {{ | + | <math>x^{\text{3}}</math> |
+ | and differentiate | ||
+ | <math>e^{x^{2}}</math>, we get | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{x^{3}e^{x^{2}}\,dx=\frac{x^{4}}{4}}\centerdot e^{x^{2}}-\int{\frac{x^{4}}{4}}\centerdot e^{x^{2}}2x\,dx \\ | ||
+ | & =\frac{1}{4}x^{4}e^{x^{2}}-\frac{1}{2}\int{x^{5}e^{x^{2}}\,dx} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | which just seems to make the integral harder. The solution is instead to substitute | ||
+ | <math>u=x^{2}</math>. If we write the integral as | ||
+ | |||
+ | |||
+ | <math>\int\limits_{0}^{1}{x^{3}e^{x^{2}}\,dx}=\int\limits_{0}^{1}{x^{2}e^{x^{2}}x\,dx}</math> | ||
+ | |||
+ | |||
+ | we see that the expression | ||
+ | <math>''x\,dx''</math> | ||
+ | can be replaced by | ||
+ | <math>du</math> | ||
+ | and the rest of the integrand contains only | ||
+ | <math>x</math> | ||
+ | in the form of | ||
+ | <math>x^{\text{2}}</math>. The substitution gives | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{0}^{1}{x^{3}e^{x^{2}}\,dx}=\int\limits_{0}^{1}{x^{2}e^{x^{2}}x\,dx}=\left\{ \begin{matrix} | ||
+ | u=x^{2} \\ | ||
+ | du=\left( x^{2} \right)^{\prime }\,dx=2x\,dx \\ | ||
+ | \end{matrix} \right\} \\ | ||
+ | & =\int\limits_{0}^{1}{ue^{u}\frac{1}{2}\,du}=\frac{1}{2}\int\limits_{0}^{1}{ue^{u}\,du} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | We can then calculate this integral be partial integration, where we differentiate away the factor | ||
+ | <math>u</math>: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{1}{2}\int\limits_{0}^{1}{ue^{u}\,du}=\frac{1}{2}\left[ ue^{u} \right]_{0}^{1}-\frac{1}{2}\int\limits_{0}^{1}{1\centerdot e^{u}\,du} \\ | ||
+ | & =\frac{1}{2}\left( 1\centerdot e^{1}-0 \right)-\frac{1}{2}\left[ e^{u} \right]_{0}^{1} \\ | ||
+ | & =\frac{1}{2}e-\frac{1}{2}\left( e^{1}-e^{0} \right) \\ | ||
+ | & =\frac{1}{2}e-\frac{1}{2}e+\frac{1}{2}=\frac{1}{2} \\ | ||
+ | \end{align}</math> |
Version vom 13:50, 22. Okt. 2008
We have a product of two factors in the integrand, so a partial integration does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate \displaystyle x^{\text{3}} (so as to reduce its exponent by \displaystyle \text{1}), we need to find a primitive function for \displaystyle e^{x^{2}}, and how do we do that? If, on the other hand, we integrate \displaystyle x^{\text{3}} and differentiate \displaystyle e^{x^{2}}, we get
\displaystyle \begin{align}
& \int{x^{3}e^{x^{2}}\,dx=\frac{x^{4}}{4}}\centerdot e^{x^{2}}-\int{\frac{x^{4}}{4}}\centerdot e^{x^{2}}2x\,dx \\
& =\frac{1}{4}x^{4}e^{x^{2}}-\frac{1}{2}\int{x^{5}e^{x^{2}}\,dx} \\
\end{align}
which just seems to make the integral harder. The solution is instead to substitute \displaystyle u=x^{2}. If we write the integral as
\displaystyle \int\limits_{0}^{1}{x^{3}e^{x^{2}}\,dx}=\int\limits_{0}^{1}{x^{2}e^{x^{2}}x\,dx}
we see that the expression
\displaystyle ''x\,dx''
can be replaced by
\displaystyle du
and the rest of the integrand contains only
\displaystyle x
in the form of
\displaystyle x^{\text{2}}. The substitution gives
\displaystyle \begin{align}
& \int\limits_{0}^{1}{x^{3}e^{x^{2}}\,dx}=\int\limits_{0}^{1}{x^{2}e^{x^{2}}x\,dx}=\left\{ \begin{matrix}
u=x^{2} \\
du=\left( x^{2} \right)^{\prime }\,dx=2x\,dx \\
\end{matrix} \right\} \\
& =\int\limits_{0}^{1}{ue^{u}\frac{1}{2}\,du}=\frac{1}{2}\int\limits_{0}^{1}{ue^{u}\,du} \\
\end{align}
We can then calculate this integral be partial integration, where we differentiate away the factor
\displaystyle u:
\displaystyle \begin{align}
& \frac{1}{2}\int\limits_{0}^{1}{ue^{u}\,du}=\frac{1}{2}\left[ ue^{u} \right]_{0}^{1}-\frac{1}{2}\int\limits_{0}^{1}{1\centerdot e^{u}\,du} \\
& =\frac{1}{2}\left( 1\centerdot e^{1}-0 \right)-\frac{1}{2}\left[ e^{u} \right]_{0}^{1} \\
& =\frac{1}{2}e-\frac{1}{2}\left( e^{1}-e^{0} \right) \\
& =\frac{1}{2}e-\frac{1}{2}e+\frac{1}{2}=\frac{1}{2} \\
\end{align}