Lösung 2.3:1b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:1b moved to Solution 2.3:1b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
we look at the formula for partial integration,
-
<center> [[Image:2_3_1b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\int{f\left( x \right)}g\left( x \right)\,dx=F\left( x \right)g\left( x \right)-\int{F\left( x \right){g}'\left( x \right)\,dx}</math>
 +
 
 +
 
 +
we see that if we choose
 +
<math>f\left( x \right)=\text{sin }x\text{ }</math>
 +
and
 +
<math>g\left( x \right)=x+\text{1}</math>, then the factor
 +
<math>g\left( x \right)</math>
 +
will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for
 +
<math>f\left( x \right)</math>
 +
(which we can) and that we can then integrate it. Let's try!
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\left( x+1 \right)}\sin x\,dx=\left( x+1 \right)\centerdot \left( -\cos x \right)-\int{1\centerdot }\left( -\cos x \right)\,dx \\
 +
& =-\left( x+1 \right)\cos x+\int{\cos x}\,dx \\
 +
& =-\left( x+1 \right)\cos x+\sin x+C \\
 +
\end{align}</math>

Version vom 13:32, 21. Okt. 2008

we look at the formula for partial integration,


\displaystyle \int{f\left( x \right)}g\left( x \right)\,dx=F\left( x \right)g\left( x \right)-\int{F\left( x \right){g}'\left( x \right)\,dx}


we see that if we choose \displaystyle f\left( x \right)=\text{sin }x\text{ } and \displaystyle g\left( x \right)=x+\text{1}, then the factor \displaystyle g\left( x \right) will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for \displaystyle f\left( x \right) (which we can) and that we can then integrate it. Let's try!


\displaystyle \begin{align} & \int{\left( x+1 \right)}\sin x\,dx=\left( x+1 \right)\centerdot \left( -\cos x \right)-\int{1\centerdot }\left( -\cos x \right)\,dx \\ & =-\left( x+1 \right)\cos x+\int{\cos x}\,dx \\ & =-\left( x+1 \right)\cos x+\sin x+C \\ \end{align}