Lösung 2.3:1a
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.3:1a moved to Solution 2.3:1a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The formula for partial integration reads |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\int{f\left( x \right)}g\left( x \right)\,dx=F\left( x \right)g\left( x \right)-\int{F\left( x \right){g}'\left( x \right)\,dx}</math>, |
- | < | + | |
- | {{ | + | where |
+ | <math>F\left( x \right)</math> | ||
+ | is a primitive function of | ||
+ | <math>f\left( x \right)</math> | ||
+ | and | ||
+ | <math>{g}'\left( x \right)</math> | ||
+ | is a derivative of | ||
+ | <math>g\left( x \right)</math>. | ||
+ | |||
+ | If we are to use partial integration, the integrand has to be divided up into two factors, a factor | ||
+ | <math>f\left( x \right)</math> | ||
+ | which we integrate and a factor | ||
+ | <math>g\left( x \right)</math> | ||
+ | which we differentiate. It is only when the product | ||
+ | <math>F\left( x \right){g}'\left( x \right)</math> | ||
+ | becomes simpler than | ||
+ | <math>f\left( x \right)g\left( x \right)</math> | ||
+ | that there is any point in partially integrating. | ||
+ | |||
+ | In the integral | ||
+ | |||
+ | |||
+ | <math>\int{2xe^{-x}}\,dx</math>, | ||
+ | |||
+ | it can seem appropriate to choose | ||
+ | <math>f\left( x \right)=e^{-x}</math> | ||
+ | and | ||
+ | <math>g\left( x \right)=2x</math>, because then | ||
+ | <math>{g}'\left( x \right)=2</math> | ||
+ | and we have only | ||
+ | <math>F\left( x \right)=-e^{-x}</math> | ||
+ | left, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{2xe^{-x}}\,dx=2x\centerdot \left( -e^{-x} \right)-\int{2\centerdot }\left( -e^{-x} \right)\,dx \\ | ||
+ | & =-2xe^{-x}+2\int{e^{-x}\,dx} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | It remains only to integrate | ||
+ | <math>e^{-x}</math> | ||
+ | and we are finished: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & =-2xe^{-x}+2\left( -e^{-x} \right)+C \\ | ||
+ | & =-2xe^{-x}-2e^{-x}+C \\ | ||
+ | & =-2\left( x+1 \right)e^{-x}+C \\ | ||
+ | \end{align}</math> |
Version vom 13:24, 21. Okt. 2008
The formula for partial integration reads
\displaystyle \int{f\left( x \right)}g\left( x \right)\,dx=F\left( x \right)g\left( x \right)-\int{F\left( x \right){g}'\left( x \right)\,dx},
where \displaystyle F\left( x \right) is a primitive function of \displaystyle f\left( x \right) and \displaystyle {g}'\left( x \right) is a derivative of \displaystyle g\left( x \right).
If we are to use partial integration, the integrand has to be divided up into two factors, a factor \displaystyle f\left( x \right) which we integrate and a factor \displaystyle g\left( x \right) which we differentiate. It is only when the product \displaystyle F\left( x \right){g}'\left( x \right) becomes simpler than \displaystyle f\left( x \right)g\left( x \right) that there is any point in partially integrating.
In the integral
\displaystyle \int{2xe^{-x}}\,dx,
it can seem appropriate to choose \displaystyle f\left( x \right)=e^{-x} and \displaystyle g\left( x \right)=2x, because then \displaystyle {g}'\left( x \right)=2 and we have only \displaystyle F\left( x \right)=-e^{-x} left,
\displaystyle \begin{align}
& \int{2xe^{-x}}\,dx=2x\centerdot \left( -e^{-x} \right)-\int{2\centerdot }\left( -e^{-x} \right)\,dx \\
& =-2xe^{-x}+2\int{e^{-x}\,dx} \\
\end{align}
It remains only to integrate
\displaystyle e^{-x}
and we are finished:
\displaystyle \begin{align}
& =-2xe^{-x}+2\left( -e^{-x} \right)+C \\
& =-2xe^{-x}-2e^{-x}+C \\
& =-2\left( x+1 \right)e^{-x}+C \\
\end{align}