Lösung 2.3:1a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:1a moved to Solution 2.3:1a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The formula for partial integration reads
-
<center> [[Image:2_3_1a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
<math>\int{f\left( x \right)}g\left( x \right)\,dx=F\left( x \right)g\left( x \right)-\int{F\left( x \right){g}'\left( x \right)\,dx}</math>,
-
<center> [[Image:2_3_1a-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
where
 +
<math>F\left( x \right)</math>
 +
is a primitive function of
 +
<math>f\left( x \right)</math>
 +
and
 +
<math>{g}'\left( x \right)</math>
 +
is a derivative of
 +
<math>g\left( x \right)</math>.
 +
 
 +
If we are to use partial integration, the integrand has to be divided up into two factors, a factor
 +
<math>f\left( x \right)</math>
 +
which we integrate and a factor
 +
<math>g\left( x \right)</math>
 +
which we differentiate. It is only when the product
 +
<math>F\left( x \right){g}'\left( x \right)</math>
 +
becomes simpler than
 +
<math>f\left( x \right)g\left( x \right)</math>
 +
that there is any point in partially integrating.
 +
 
 +
In the integral
 +
 
 +
 
 +
<math>\int{2xe^{-x}}\,dx</math>,
 +
 
 +
it can seem appropriate to choose
 +
<math>f\left( x \right)=e^{-x}</math>
 +
and
 +
<math>g\left( x \right)=2x</math>, because then
 +
<math>{g}'\left( x \right)=2</math>
 +
and we have only
 +
<math>F\left( x \right)=-e^{-x}</math>
 +
left,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{2xe^{-x}}\,dx=2x\centerdot \left( -e^{-x} \right)-\int{2\centerdot }\left( -e^{-x} \right)\,dx \\
 +
& =-2xe^{-x}+2\int{e^{-x}\,dx} \\
 +
\end{align}</math>
 +
 
 +
 
 +
It remains only to integrate
 +
<math>e^{-x}</math>
 +
and we are finished:
 +
 
 +
 
 +
<math>\begin{align}
 +
& =-2xe^{-x}+2\left( -e^{-x} \right)+C \\
 +
& =-2xe^{-x}-2e^{-x}+C \\
 +
& =-2\left( x+1 \right)e^{-x}+C \\
 +
\end{align}</math>

Version vom 13:24, 21. Okt. 2008

The formula for partial integration reads


\displaystyle \int{f\left( x \right)}g\left( x \right)\,dx=F\left( x \right)g\left( x \right)-\int{F\left( x \right){g}'\left( x \right)\,dx},

where \displaystyle F\left( x \right) is a primitive function of \displaystyle f\left( x \right) and \displaystyle {g}'\left( x \right) is a derivative of \displaystyle g\left( x \right).

If we are to use partial integration, the integrand has to be divided up into two factors, a factor \displaystyle f\left( x \right) which we integrate and a factor \displaystyle g\left( x \right) which we differentiate. It is only when the product \displaystyle F\left( x \right){g}'\left( x \right) becomes simpler than \displaystyle f\left( x \right)g\left( x \right) that there is any point in partially integrating.

In the integral


\displaystyle \int{2xe^{-x}}\,dx,

it can seem appropriate to choose \displaystyle f\left( x \right)=e^{-x} and \displaystyle g\left( x \right)=2x, because then \displaystyle {g}'\left( x \right)=2 and we have only \displaystyle F\left( x \right)=-e^{-x} left,


\displaystyle \begin{align} & \int{2xe^{-x}}\,dx=2x\centerdot \left( -e^{-x} \right)-\int{2\centerdot }\left( -e^{-x} \right)\,dx \\ & =-2xe^{-x}+2\int{e^{-x}\,dx} \\ \end{align}


It remains only to integrate \displaystyle e^{-x} and we are finished:


\displaystyle \begin{align} & =-2xe^{-x}+2\left( -e^{-x} \right)+C \\ & =-2xe^{-x}-2e^{-x}+C \\ & =-2\left( x+1 \right)e^{-x}+C \\ \end{align}