Lösung 2.2:4d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:4d moved to Solution 2.2:4d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The integral can be simplified by a so-called polynomial division. We add and take away
-
<center> [[Image:2_2_4d.gif]] </center>
+
<math>\text{1}</math>
-
{{NAVCONTENT_STOP}}
+
in the numerator and can thus eliminate the
 +
<math>x^{2}</math>
 +
-term from the numerator
 +
 
 +
 
 +
<math>\frac{x^{2}}{x^{2}+1}=\frac{x^{2}+1-1}{x^{2}+1}=\frac{x^{2}+1}{x^{2}+1}-\frac{1}{x^{2}+1}=1-\frac{1}{x^{2}+1}</math>
 +
 
 +
 
 +
Thus, we have
 +
 
 +
 
 +
<math>\int{\frac{x^{2}}{x^{2}+1}\,dx=\int{\left( 1-\frac{1}{x^{2}+1} \right)}}\,dx=x-\arctan x+C</math>

Version vom 12:57, 21. Okt. 2008

The integral can be simplified by a so-called polynomial division. We add and take away \displaystyle \text{1} in the numerator and can thus eliminate the \displaystyle x^{2} -term from the numerator


\displaystyle \frac{x^{2}}{x^{2}+1}=\frac{x^{2}+1-1}{x^{2}+1}=\frac{x^{2}+1}{x^{2}+1}-\frac{1}{x^{2}+1}=1-\frac{1}{x^{2}+1}


Thus, we have


\displaystyle \int{\frac{x^{2}}{x^{2}+1}\,dx=\int{\left( 1-\frac{1}{x^{2}+1} \right)}}\,dx=x-\arctan x+C