Lösung 2.2:4c
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:4c moved to Solution 2.2:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b, |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\int{\frac{\,dx}{x^{2}+4x+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}-2^{2}+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}</math> |
- | < | + | |
- | {{ | + | |
+ | We take out a factor | ||
+ | <math>\text{4}</math> | ||
+ | from the denominator | ||
+ | |||
+ | |||
+ | <math>\int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}=\int{\frac{\,dx}{4\left( \frac{1}{4}\left( x+2 \right)^{2}+1 \right)}}=\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}</math> | ||
+ | |||
+ | |||
+ | and rewrite the quadratic term as | ||
+ | |||
+ | |||
+ | <math>\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}=\frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}</math> | ||
+ | |||
+ | |||
+ | If we now substitute | ||
+ | <math>u=\frac{x+2}{2}</math>, we obtain the integral in the exercise | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}=\left\{ \begin{matrix} | ||
+ | u=\frac{x+2}{2} \\ | ||
+ | du=\frac{\,dx}{2} \\ | ||
+ | \end{matrix} \right\} \\ | ||
+ | & =\frac{1}{4}\int{\frac{\,2dx}{u^{2}+1}}=\frac{1}{2}\int{\frac{\,dx}{u^{2}+1}} \\ | ||
+ | & =\frac{1}{2}\arctan u+C \\ | ||
+ | & =\frac{1}{2}\arctan \frac{x+2}{2}+C \\ | ||
+ | \end{align}</math> |
Version vom 12:51, 21. Okt. 2008
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
\displaystyle \int{\frac{\,dx}{x^{2}+4x+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}-2^{2}+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}
We take out a factor
\displaystyle \text{4}
from the denominator
\displaystyle \int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}=\int{\frac{\,dx}{4\left( \frac{1}{4}\left( x+2 \right)^{2}+1 \right)}}=\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}
and rewrite the quadratic term as
\displaystyle \frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}=\frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}
If we now substitute
\displaystyle u=\frac{x+2}{2}, we obtain the integral in the exercise
\displaystyle \begin{align}
& \frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}=\left\{ \begin{matrix}
u=\frac{x+2}{2} \\
du=\frac{\,dx}{2} \\
\end{matrix} \right\} \\
& =\frac{1}{4}\int{\frac{\,2dx}{u^{2}+1}}=\frac{1}{2}\int{\frac{\,dx}{u^{2}+1}} \\
& =\frac{1}{2}\arctan u+C \\
& =\frac{1}{2}\arctan \frac{x+2}{2}+C \\
\end{align}