Lösung 2.2:4b
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:4b moved to Solution 2.2:4b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We could substitute |
- | < | + | <math>u=x-\text{1}</math>, but we would then still have the problem of the second term, |
- | {{ | + | <math>\text{3}</math> |
- | {{ | + | in the denominator. Instead, we take out a factor |
- | < | + | <math>\text{3}</math> |
- | {{ | + | from the denominator, |
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{\frac{\,dx}{\left( x-1 \right)^{2}+3}}=\int{\frac{\,dx}{3\left( \frac{1}{3}\left( x-1 \right)^{2}+1 \right)}} \\ | ||
+ | & =\frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | and move a factor | ||
+ | <math>\frac{1}{3}</math> | ||
+ | into the square | ||
+ | <math>\left( x-1 \right)^{2}</math>, | ||
+ | |||
+ | |||
+ | <math>\frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}}=\frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}</math> | ||
+ | |||
+ | Now, we substitute | ||
+ | <math>u=\frac{x-1}{\sqrt{3}}</math> | ||
+ | and get rid of all the problems at once: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}=\left\{ \begin{matrix} | ||
+ | u=\frac{x-1}{\sqrt{3}} \\ | ||
+ | du=\frac{\,dx}{\sqrt{3}} \\ | ||
+ | \end{matrix} \right\} \\ | ||
+ | & =\frac{1}{3}\int{\frac{\sqrt{3}\,du}{u^{2}+1}}=\frac{\sqrt{3}}{3}\int{\frac{\,du}{u^{2}+1}} \\ | ||
+ | & =\frac{1}{\sqrt{3}}\arctan u+C \\ | ||
+ | & =\frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}}+C \\ | ||
+ | \end{align}</math> |
Version vom 12:38, 21. Okt. 2008
We could substitute \displaystyle u=x-\text{1}, but we would then still have the problem of the second term, \displaystyle \text{3} in the denominator. Instead, we take out a factor \displaystyle \text{3} from the denominator,
\displaystyle \begin{align}
& \int{\frac{\,dx}{\left( x-1 \right)^{2}+3}}=\int{\frac{\,dx}{3\left( \frac{1}{3}\left( x-1 \right)^{2}+1 \right)}} \\
& =\frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}} \\
\end{align}
and move a factor \displaystyle \frac{1}{3} into the square \displaystyle \left( x-1 \right)^{2},
\displaystyle \frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}}=\frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}
Now, we substitute \displaystyle u=\frac{x-1}{\sqrt{3}} and get rid of all the problems at once:
\displaystyle \begin{align}
& \frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}=\left\{ \begin{matrix}
u=\frac{x-1}{\sqrt{3}} \\
du=\frac{\,dx}{\sqrt{3}} \\
\end{matrix} \right\} \\
& =\frac{1}{3}\int{\frac{\sqrt{3}\,du}{u^{2}+1}}=\frac{\sqrt{3}}{3}\int{\frac{\,du}{u^{2}+1}} \\
& =\frac{1}{\sqrt{3}}\arctan u+C \\
& =\frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}}+C \\
\end{align}