Lösung 2.2:4a
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:4a moved to Solution 2.2:4a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | What makes our integral differ from that in the exercise´s text is that there is a term |
- | < | + | <math>x^{2}+4</math> |
- | {{ | + | instead of |
+ | <math>x^{2}+1</math>, but if we factor out the 4 from the denominator, | ||
+ | |||
+ | |||
+ | <math>\int{\frac{\,dx}{x^{2}+4}}=\int{\frac{\,dx}{4\left( \frac{1}{4}x^{2}+1 \right)}}=\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}x^{2}+1}}</math>, | ||
+ | |||
+ | we obtain the correct second term in the denominator. On the other hand, there is no longer | ||
+ | <math>x^{2}</math> | ||
+ | but | ||
+ | <math>\frac{1}{4}x^{2}</math>, although we can get around this by substituting | ||
+ | <math>u=\frac{1}{2}x</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}x^{2}+1}}=\frac{1}{4}\int{\frac{\,dx}{\left( \frac{x}{2} \right)^{2}+1}}=\left\{ \begin{matrix} | ||
+ | u=\frac{1}{2}x \\ | ||
+ | du=\frac{1}{2}\,dx \\ | ||
+ | \end{matrix} \right\} \\ | ||
+ | & =\frac{1}{4}\int{\frac{2\,du}{u^{2}+1}}=\frac{1}{2}\int{\frac{\,du}{u^{2}+1}} \\ | ||
+ | & =\frac{1}{2}\arctan u+C=\frac{1}{2}\arctan \frac{x}{2}+C \\ | ||
+ | \end{align}</math> |
Version vom 12:22, 21. Okt. 2008
What makes our integral differ from that in the exercise´s text is that there is a term \displaystyle x^{2}+4 instead of \displaystyle x^{2}+1, but if we factor out the 4 from the denominator,
\displaystyle \int{\frac{\,dx}{x^{2}+4}}=\int{\frac{\,dx}{4\left( \frac{1}{4}x^{2}+1 \right)}}=\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}x^{2}+1}},
we obtain the correct second term in the denominator. On the other hand, there is no longer \displaystyle x^{2} but \displaystyle \frac{1}{4}x^{2}, although we can get around this by substituting \displaystyle u=\frac{1}{2}x,
\displaystyle \begin{align}
& \frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}x^{2}+1}}=\frac{1}{4}\int{\frac{\,dx}{\left( \frac{x}{2} \right)^{2}+1}}=\left\{ \begin{matrix}
u=\frac{1}{2}x \\
du=\frac{1}{2}\,dx \\
\end{matrix} \right\} \\
& =\frac{1}{4}\int{\frac{2\,du}{u^{2}+1}}=\frac{1}{2}\int{\frac{\,du}{u^{2}+1}} \\
& =\frac{1}{2}\arctan u+C=\frac{1}{2}\arctan \frac{x}{2}+C \\
\end{align}