Lösung 2.2:3a
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.2:3a moved to Solution 2.2:3a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The secret behind a successful substitution is to be able to recognize the integral as an expression of the type |
- | < | + | |
- | {{ | + | |
+ | <math>\int{\left( \begin{matrix} | ||
+ | \text{an}\quad \text{expression} \\ | ||
+ | \text{in}\quad u \\ | ||
+ | \end{matrix} \right)}\centerdot {u}'\,dx</math>, | ||
+ | |||
+ | where | ||
+ | <math>u=u\left( x \right)</math> | ||
+ | is the actual substitution. In the integral | ||
+ | |||
+ | |||
+ | <math>\int{2x\sin x^{2}\,dx}</math> | ||
+ | |||
+ | |||
+ | we see that the expression | ||
+ | <math>x^{2}</math> | ||
+ | is the argument for the sine function, as the same time as its derivative | ||
+ | <math>\left( x^{2} \right)^{\prime }=2x</math> | ||
+ | stands as a factor in front of sine. Therefore, if we set | ||
+ | <math>u=x^{2}</math>, the integral, the integral will be of the form | ||
+ | |||
+ | |||
+ | <math>\int{{u}'\sin u\,dx}</math> | ||
+ | |||
+ | |||
+ | Thus, we can use | ||
+ | <math>u=x^{2}</math> | ||
+ | for the substitution: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{2x\sin x^{2}\,dx}=\left\{ \begin{matrix} | ||
+ | u=x^{2} \\ | ||
+ | du=2x\,dx \\ | ||
+ | \end{matrix} \right\}=\int{\sin u\,du} \\ | ||
+ | & =-\cos u+C=-\cos x^{2}+C \\ | ||
+ | \end{align}</math> |
Version vom 12:51, 20. Okt. 2008
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
\displaystyle \int{\left( \begin{matrix}
\text{an}\quad \text{expression} \\
\text{in}\quad u \\
\end{matrix} \right)}\centerdot {u}'\,dx,
where \displaystyle u=u\left( x \right) is the actual substitution. In the integral
\displaystyle \int{2x\sin x^{2}\,dx}
we see that the expression
\displaystyle x^{2}
is the argument for the sine function, as the same time as its derivative
\displaystyle \left( x^{2} \right)^{\prime }=2x
stands as a factor in front of sine. Therefore, if we set
\displaystyle u=x^{2}, the integral, the integral will be of the form
\displaystyle \int{{u}'\sin u\,dx}
Thus, we can use
\displaystyle u=x^{2}
for the substitution:
\displaystyle \begin{align}
& \int{2x\sin x^{2}\,dx}=\left\{ \begin{matrix}
u=x^{2} \\
du=2x\,dx \\
\end{matrix} \right\}=\int{\sin u\,du} \\
& =-\cos u+C=-\cos x^{2}+C \\
\end{align}