Lösung 2.2:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:3a moved to Solution 2.2:3a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
-
<center> [[Image:2_2_3a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\int{\left( \begin{matrix}
 +
\text{an}\quad \text{expression} \\
 +
\text{in}\quad u \\
 +
\end{matrix} \right)}\centerdot {u}'\,dx</math>,
 +
 
 +
where
 +
<math>u=u\left( x \right)</math>
 +
is the actual substitution. In the integral
 +
 
 +
 
 +
<math>\int{2x\sin x^{2}\,dx}</math>
 +
 
 +
 
 +
we see that the expression
 +
<math>x^{2}</math>
 +
is the argument for the sine function, as the same time as its derivative
 +
<math>\left( x^{2} \right)^{\prime }=2x</math>
 +
stands as a factor in front of sine. Therefore, if we set
 +
<math>u=x^{2}</math>, the integral, the integral will be of the form
 +
 
 +
 
 +
<math>\int{{u}'\sin u\,dx}</math>
 +
 
 +
 
 +
Thus, we can use
 +
<math>u=x^{2}</math>
 +
for the substitution:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{2x\sin x^{2}\,dx}=\left\{ \begin{matrix}
 +
u=x^{2} \\
 +
du=2x\,dx \\
 +
\end{matrix} \right\}=\int{\sin u\,du} \\
 +
& =-\cos u+C=-\cos x^{2}+C \\
 +
\end{align}</math>

Version vom 12:51, 20. Okt. 2008

The secret behind a successful substitution is to be able to recognize the integral as an expression of the type


\displaystyle \int{\left( \begin{matrix} \text{an}\quad \text{expression} \\ \text{in}\quad u \\ \end{matrix} \right)}\centerdot {u}'\,dx,

where \displaystyle u=u\left( x \right) is the actual substitution. In the integral


\displaystyle \int{2x\sin x^{2}\,dx}


we see that the expression \displaystyle x^{2} is the argument for the sine function, as the same time as its derivative \displaystyle \left( x^{2} \right)^{\prime }=2x stands as a factor in front of sine. Therefore, if we set \displaystyle u=x^{2}, the integral, the integral will be of the form


\displaystyle \int{{u}'\sin u\,dx}


Thus, we can use \displaystyle u=x^{2} for the substitution:


\displaystyle \begin{align} & \int{2x\sin x^{2}\,dx}=\left\{ \begin{matrix} u=x^{2} \\ du=2x\,dx \\ \end{matrix} \right\}=\int{\sin u\,du} \\ & =-\cos u+C=-\cos x^{2}+C \\ \end{align}