Lösung 2.1:4d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:4d moved to Solution 2.1:4d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We start by drawing the three curves:
-
<center> [[Image:2_1_4d-1(5).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:2_1_4d-2(5).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:2_1_4d-3(5).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:2_1_4d-4(5).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:2_1_4d-5(5).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
 
+
[[Image:2_1_4_d1.gif|center]]
[[Image:2_1_4_d1.gif|center]]
 +
 +
When we draw the curves on the same diagram, we see that the region is bounded from below in the
 +
<math>y</math>
 +
-direction by the horizontal line
 +
<math>y=\text{1}</math>
 +
and above partly by
 +
<math>y=x+2</math>
 +
and partly by
 +
<math>y=\frac{1}{x}</math>.
 +
[[Image:2_1_4_d2.gif|center]]
[[Image:2_1_4_d2.gif|center]]
 +
 +
If we denote the
 +
<math>x</math>
 +
-coordinates of the intersection points by
 +
<math>x=a</math>,
 +
<math>x=b</math>
 +
and
 +
<math>x=c</math>, as shown in the figure, we see that the region can be divided up into two parts. In the left part between
 +
<math>x=a</math>
 +
and
 +
<math>x=b</math>, the upper limit is
 +
<math>y=x+2</math>, whilst in the right part between
 +
<math>x=b</math>
 +
and
 +
<math>x=c</math>
 +
 +
<math>y={1}/{x}\;</math>
 +
is the upper limit.
 +
[[Image:2_1_4_d3.gif|center]]
[[Image:2_1_4_d3.gif|center]]
 +
 +
The area of each part is given by the integrals
 +
 +
Left area
 +
<math>=\int\limits_{a}^{b}{\left( x+2-1 \right)}\,dx</math>
 +
 +
 +
Right area
 +
<math>=\int\limits_{b}^{c}{\left( \frac{1}{x}-1 \right)}\,dx</math>
 +
 +
 +
and the total area is the sum of these areas.
 +
 +
If we just manage to determine the curves' points of intersection, the rest is just a matter of integration.
 +
 +
To determine the points of intersection:
 +
 +
 +
<math>x=a</math>: the point of intersection between
 +
<math>y=\text{1 }</math>
 +
and
 +
<math>y=x+\text{2}</math>
 +
must both satisfy the equations of the lines
 +
 +
 +
<math>\left\{ \begin{matrix}
 +
y=\text{1 } \\
 +
y=x+\text{2} \\
 +
\end{matrix} \right.</math>
 +
 +
 +
This gives that
 +
<math>x</math>
 +
must satisfy
 +
<math>x+\text{2}=\text{1}</math>, i.e.
 +
<math>x=-\text{1 }</math>
 +
Thus,
 +
<math>a=-\text{1}</math>.
 +
 +
 +
<math>x=b</math>: At the point where the curves
 +
<math>y=x+\text{2}</math>
 +
and
 +
<math>y={1}/{x}\;</math>
 +
meet, we have that
 +
 +
 +
<math>\left\{ \begin{matrix}
 +
y=x+\text{2} \\
 +
y={1}/{x}\; \\
 +
\end{matrix} \right.</math>
 +
 +
 +
If we eliminate
 +
<math>y</math>, we obtain an equation for
 +
<math>x</math>,
 +
 +
 +
<math>x+2=\frac{1}{x}</math>,
 +
 +
which we multiply by
 +
<math>x</math>,
 +
 +
 +
<math>x^{2}+2x=1</math>
 +
 +
 +
Completing the square of the left-hand side,
 +
 +
 +
<math>\begin{align}
 +
& \left( x+1 \right)^{2}-1^{2}=1 \\
 +
& \left( x+1 \right)^{2}=2 \\
 +
\end{align}</math>,
 +
 +
and taking the root gives that
 +
<math>x=-1\pm \sqrt{2}</math>, leading to
 +
<math>b=-1+\sqrt{2}</math>
 +
 +
(the alternative
 +
<math>b=-1-\sqrt{2}</math>
 +
lies to the left of
 +
<math>b=a</math>).
 +
 +
 +
<math>x=c</math>: the final point of intersection is given by the condition that the equation to both curves,
 +
<math>y=\text{1}</math>
 +
and
 +
<math>y={1}/{x}\;</math>, are satisfied simultaneously. We see almost immediately that this gives
 +
<math>x=\text{1}</math>, i.e.
 +
<math>c=\text{ 1}</math>.
 +
 +
The sub-areas are
 +
 +
 +
<math>\begin{align}
 +
& \text{Leftarea }=\text{ }\int\limits_{-1}^{\sqrt{2}-1}{\left( x+2-1 \right)}\,dx=\int\limits_{-1}^{\sqrt{2}-1}{\left( x+1 \right)}\,dx \\
 +
& =\left[ \frac{x^{2}}{2}+x \right]_{-1}^{\sqrt{2}-1} \\
 +
& =\frac{\left( \sqrt{2}-1 \right)^{2}}{2}+\sqrt{2}-1-\left( \frac{\left( -1 \right)^{2}}{2}+\left( -1 \right) \right) \\
 +
& =\frac{\left( \sqrt{2} \right)^{2}-2\sqrt{2}+1}{2}+\sqrt{2}-1-\frac{1}{2}+1 \\
 +
& =\frac{2-2\sqrt{2}+1}{2}+\sqrt{2}-1-\frac{1}{2}+1 \\
 +
& =1-\sqrt{2}+\frac{1}{2}+\sqrt{2}-1-\frac{1}{2}+1 \\
 +
& =1 \\
 +
\end{align}</math>
 +
 +
 +
 +
<math>\begin{align}
 +
& \text{Rightarea }=\int\limits_{\sqrt{2}-1}^{1}{\left( \frac{1}{x}-1 \right)}\,dx=\left[ \ln \left| x \right|-x \right]_{\sqrt{2}-1}^{1} \\
 +
& =\ln 1-1-\left( \ln \left( \sqrt{2}-1 \right)-\left( \sqrt{2}-1 \right) \right) \\
 +
& =0-1-\ln \left( \sqrt{2}-1 \right)+\sqrt{2}-1 \\
 +
& =\sqrt{2}-2-\ln \left( \sqrt{2}-1 \right) \\
 +
\end{align}</math>

Version vom 12:46, 18. Okt. 2008

We start by drawing the three curves:

When we draw the curves on the same diagram, we see that the region is bounded from below in the \displaystyle y -direction by the horizontal line \displaystyle y=\text{1} and above partly by \displaystyle y=x+2 and partly by \displaystyle y=\frac{1}{x}.


If we denote the \displaystyle x -coordinates of the intersection points by \displaystyle x=a, \displaystyle x=b and \displaystyle x=c, as shown in the figure, we see that the region can be divided up into two parts. In the left part between \displaystyle x=a and \displaystyle x=b, the upper limit is \displaystyle y=x+2, whilst in the right part between \displaystyle x=b and \displaystyle x=c

\displaystyle y={1}/{x}\; is the upper limit.


The area of each part is given by the integrals

Left area \displaystyle =\int\limits_{a}^{b}{\left( x+2-1 \right)}\,dx


Right area \displaystyle =\int\limits_{b}^{c}{\left( \frac{1}{x}-1 \right)}\,dx


and the total area is the sum of these areas.

If we just manage to determine the curves' points of intersection, the rest is just a matter of integration.

To determine the points of intersection:


\displaystyle x=a: the point of intersection between \displaystyle y=\text{1 } and \displaystyle y=x+\text{2} must both satisfy the equations of the lines


\displaystyle \left\{ \begin{matrix} y=\text{1 } \\ y=x+\text{2} \\ \end{matrix} \right.


This gives that \displaystyle x must satisfy \displaystyle x+\text{2}=\text{1}, i.e. \displaystyle x=-\text{1 } Thus, \displaystyle a=-\text{1}.


\displaystyle x=b: At the point where the curves \displaystyle y=x+\text{2} and \displaystyle y={1}/{x}\; meet, we have that


\displaystyle \left\{ \begin{matrix} y=x+\text{2} \\ y={1}/{x}\; \\ \end{matrix} \right.


If we eliminate \displaystyle y, we obtain an equation for \displaystyle x,


\displaystyle x+2=\frac{1}{x},

which we multiply by \displaystyle x,


\displaystyle x^{2}+2x=1


Completing the square of the left-hand side,


\displaystyle \begin{align} & \left( x+1 \right)^{2}-1^{2}=1 \\ & \left( x+1 \right)^{2}=2 \\ \end{align},

and taking the root gives that \displaystyle x=-1\pm \sqrt{2}, leading to \displaystyle b=-1+\sqrt{2}

(the alternative \displaystyle b=-1-\sqrt{2} lies to the left of \displaystyle b=a).


\displaystyle x=c: the final point of intersection is given by the condition that the equation to both curves, \displaystyle y=\text{1} and \displaystyle y={1}/{x}\;, are satisfied simultaneously. We see almost immediately that this gives \displaystyle x=\text{1}, i.e. \displaystyle c=\text{ 1}.

The sub-areas are


\displaystyle \begin{align} & \text{Leftarea }=\text{ }\int\limits_{-1}^{\sqrt{2}-1}{\left( x+2-1 \right)}\,dx=\int\limits_{-1}^{\sqrt{2}-1}{\left( x+1 \right)}\,dx \\ & =\left[ \frac{x^{2}}{2}+x \right]_{-1}^{\sqrt{2}-1} \\ & =\frac{\left( \sqrt{2}-1 \right)^{2}}{2}+\sqrt{2}-1-\left( \frac{\left( -1 \right)^{2}}{2}+\left( -1 \right) \right) \\ & =\frac{\left( \sqrt{2} \right)^{2}-2\sqrt{2}+1}{2}+\sqrt{2}-1-\frac{1}{2}+1 \\ & =\frac{2-2\sqrt{2}+1}{2}+\sqrt{2}-1-\frac{1}{2}+1 \\ & =1-\sqrt{2}+\frac{1}{2}+\sqrt{2}-1-\frac{1}{2}+1 \\ & =1 \\ \end{align}


\displaystyle \begin{align} & \text{Rightarea }=\int\limits_{\sqrt{2}-1}^{1}{\left( \frac{1}{x}-1 \right)}\,dx=\left[ \ln \left| x \right|-x \right]_{\sqrt{2}-1}^{1} \\ & =\ln 1-1-\left( \ln \left( \sqrt{2}-1 \right)-\left( \sqrt{2}-1 \right) \right) \\ & =0-1-\ln \left( \sqrt{2}-1 \right)+\sqrt{2}-1 \\ & =\sqrt{2}-2-\ln \left( \sqrt{2}-1 \right) \\ \end{align}