Lösung 2.1:4b
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.1:4b moved to Solution 2.1:4b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | By completing the square of the equation of the curve |
| - | + | ||
| - | { | + | |
| - | + | <math>\begin{align} | |
| - | + | & y=-x^{2}+2x+2=-\left( x^{2}-2x-2 \right) \\ | |
| - | { | + | & =-\left( \left( x-1 \right)^{2}-1^{2}-2 \right)=-\left( x-1 \right)^{2}+3 \\ |
| - | { | + | \end{align}</math> |
| - | < | + | |
| - | + | ||
| - | { | + | we can read off that the curve is a downward parabola with maximum value |
| - | + | <math>y=\text{3 }</math> | |
| - | + | when | |
| + | <math>x=\text{1}</math> | ||
| + | |||
[[Image:2_1_4_b.gif|center]] | [[Image:2_1_4_b.gif|center]] | ||
| + | |||
| + | |||
| + | The region whose area we shall determine is the one shaded in the figure. | ||
| + | |||
| + | We can express this area using the integral | ||
| + | |||
| + | Area= | ||
| + | <math>\int\limits_{a}^{b}{\left( -x^{2}+2x+2 \right)}\,dx</math> | ||
| + | |||
| + | where | ||
| + | <math>a</math> | ||
| + | and | ||
| + | <math>b</math> | ||
| + | are the | ||
| + | <math>x</math> | ||
| + | -coordinates for the points of intersection between the parabola and the | ||
| + | <math>x</math> | ||
| + | -axis. | ||
| + | |||
| + | A solution plan is to first determine the intersection points, | ||
| + | <math>x=a</math> | ||
| + | and | ||
| + | <math>x=b</math>, and then calculate the area using the integral formula above. | ||
| + | |||
| + | The parabola cuts the | ||
| + | <math>x</math> | ||
| + | -axis when its | ||
| + | <math>y</math> | ||
| + | -coordinate is zero, i.e. | ||
| + | |||
| + | |||
| + | <math>0=-x^{2}+2x+2</math> | ||
| + | |||
| + | |||
| + | and because we have already completed the square of the right-hand side once, the equation can be written as | ||
| + | |||
| + | |||
| + | <math>0=-\left( x-1 \right)^{2}+3</math> | ||
| + | |||
| + | or | ||
| + | |||
| + | |||
| + | <math>\left( x-1 \right)^{2}=3</math>. | ||
| + | |||
| + | Taking the root gives | ||
| + | <math>x=1\pm \sqrt{3}</math>. The points of intersection | ||
| + | <math>x=1-\sqrt{3}</math> | ||
| + | and | ||
| + | <math>x=1+\sqrt{3}</math>. | ||
| + | |||
| + | The area we are looking for is therefore given by | ||
| + | |||
| + | Area | ||
| + | <math>=\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -x^{2}+2x+2 \right)}\,dx</math> | ||
| + | |||
| + | |||
| + | Instead of directly starting to calculate, we can start from the integrand in the form we obtain after completing its square, | ||
| + | |||
| + | Area= | ||
| + | <math>=\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -\left( x-1 \right)^{2}+3 \right)}\,dx</math> | ||
| + | |||
| + | |||
| + | which seems easier. Because the expression | ||
| + | <math>x-1</math> | ||
| + | inside the square is a linear expression, we can write down a primitive function “in the usual way”, | ||
| + | |||
| + | Area | ||
| + | <math>=\left[ -\frac{\left( x-1 \right)^{3}}{3}+3x \right]_{1-\sqrt{3}}^{1+\sqrt{3}}</math> | ||
| + | |||
| + | |||
| + | (If one is uncertain of this step, it is possible to differentiate the primitive function and see that one really does get the integral back). Hence, | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \text{Area}=-\frac{\left( 1+\sqrt{3}-1 \right)^{3}}{3}+3\left( 1+\sqrt{3} \right)-\left( -\frac{\left( 1-\sqrt{3}-1 \right)^{3}}{3}+3\left( 1-\sqrt{3} \right) \right) \\ | ||
| + | & =-\frac{\left( \sqrt{3} \right)^{3}}{3}+3+3\sqrt{3}+\frac{\left( -\sqrt{3} \right)^{3}}{3}-3+3\sqrt{3} \\ | ||
| + | & =-\frac{\sqrt{3}\sqrt{3}\sqrt{3}}{3}+3\sqrt{3}+\frac{\left( -\sqrt{3} \right)\left( -\sqrt{3} \right)\left( -\sqrt{3} \right)}{3}+3\sqrt{3} \\ | ||
| + | & =-\frac{3\sqrt{3}}{3}+3\sqrt{3}-\frac{3\sqrt{3}}{3}+3\sqrt{3} \\ | ||
| + | & =-\sqrt{3}+3\sqrt{3}-\sqrt{3}+3\sqrt{3} \\ | ||
| + | & =\left( -1+3-1+3 \right)\sqrt{3}=4\sqrt{3} \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | NOTE: The calculations become a lot more complicated if one starts from | ||
| + | |||
| + | |||
| + | <math>=\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -x^{2}+2x+2 \right)}\,dx=....</math> | ||
Version vom 11:32, 18. Okt. 2008
By completing the square of the equation of the curve
\displaystyle \begin{align}
& y=-x^{2}+2x+2=-\left( x^{2}-2x-2 \right) \\
& =-\left( \left( x-1 \right)^{2}-1^{2}-2 \right)=-\left( x-1 \right)^{2}+3 \\
\end{align}
we can read off that the curve is a downward parabola with maximum value
\displaystyle y=\text{3 }
when
\displaystyle x=\text{1}
The region whose area we shall determine is the one shaded in the figure.
We can express this area using the integral
Area= \displaystyle \int\limits_{a}^{b}{\left( -x^{2}+2x+2 \right)}\,dx
where \displaystyle a and \displaystyle b are the \displaystyle x -coordinates for the points of intersection between the parabola and the \displaystyle x -axis.
A solution plan is to first determine the intersection points, \displaystyle x=a and \displaystyle x=b, and then calculate the area using the integral formula above.
The parabola cuts the \displaystyle x -axis when its \displaystyle y -coordinate is zero, i.e.
\displaystyle 0=-x^{2}+2x+2
and because we have already completed the square of the right-hand side once, the equation can be written as
\displaystyle 0=-\left( x-1 \right)^{2}+3
or
\displaystyle \left( x-1 \right)^{2}=3.
Taking the root gives \displaystyle x=1\pm \sqrt{3}. The points of intersection \displaystyle x=1-\sqrt{3} and \displaystyle x=1+\sqrt{3}.
The area we are looking for is therefore given by
Area \displaystyle =\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -x^{2}+2x+2 \right)}\,dx
Instead of directly starting to calculate, we can start from the integrand in the form we obtain after completing its square,
Area= \displaystyle =\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -\left( x-1 \right)^{2}+3 \right)}\,dx
which seems easier. Because the expression
\displaystyle x-1
inside the square is a linear expression, we can write down a primitive function “in the usual way”,
Area \displaystyle =\left[ -\frac{\left( x-1 \right)^{3}}{3}+3x \right]_{1-\sqrt{3}}^{1+\sqrt{3}}
(If one is uncertain of this step, it is possible to differentiate the primitive function and see that one really does get the integral back). Hence,
\displaystyle \begin{align}
& \text{Area}=-\frac{\left( 1+\sqrt{3}-1 \right)^{3}}{3}+3\left( 1+\sqrt{3} \right)-\left( -\frac{\left( 1-\sqrt{3}-1 \right)^{3}}{3}+3\left( 1-\sqrt{3} \right) \right) \\
& =-\frac{\left( \sqrt{3} \right)^{3}}{3}+3+3\sqrt{3}+\frac{\left( -\sqrt{3} \right)^{3}}{3}-3+3\sqrt{3} \\
& =-\frac{\sqrt{3}\sqrt{3}\sqrt{3}}{3}+3\sqrt{3}+\frac{\left( -\sqrt{3} \right)\left( -\sqrt{3} \right)\left( -\sqrt{3} \right)}{3}+3\sqrt{3} \\
& =-\frac{3\sqrt{3}}{3}+3\sqrt{3}-\frac{3\sqrt{3}}{3}+3\sqrt{3} \\
& =-\sqrt{3}+3\sqrt{3}-\sqrt{3}+3\sqrt{3} \\
& =\left( -1+3-1+3 \right)\sqrt{3}=4\sqrt{3} \\
\end{align}
NOTE: The calculations become a lot more complicated if one starts from
\displaystyle =\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -x^{2}+2x+2 \right)}\,dx=....

