Lösung 2.1:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:3d moved to Solution 2.1:3d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
By dividing the two terms in the numerator by
-
<center> [[Image:2_1_3d.gif]] </center>
+
<math>x</math>, we can simplify each term to a form which makes it possible simply to write down the primitive functions of the integrand:
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
<math>\begin{align}
 +
& \int{\frac{x^{2}+1}{x}}\,dx=\int{\left( \frac{x^{2}}{x}+\frac{1}{x} \right)}\,dx \\
 +
& =\int{\left( x+x^{-1} \right)}\,dx \\
 +
& =\frac{x^{2}}{2}+\ln \left| x \right|+C \\
 +
\end{align}</math>
 +
 
 +
 
 +
where
 +
<math>C</math>
 +
is an arbitrary constant.
 +
 
 +
NOTE: observe that
 +
<math>\frac{1}{x}</math>
 +
has a singularity at
 +
<math>x=0</math>, so the answers above are only primitive functions over intervals that do not contain
 +
<math>x=0</math>.

Version vom 13:57, 17. Okt. 2008

By dividing the two terms in the numerator by \displaystyle x, we can simplify each term to a form which makes it possible simply to write down the primitive functions of the integrand:


\displaystyle \begin{align} & \int{\frac{x^{2}+1}{x}}\,dx=\int{\left( \frac{x^{2}}{x}+\frac{1}{x} \right)}\,dx \\ & =\int{\left( x+x^{-1} \right)}\,dx \\ & =\frac{x^{2}}{2}+\ln \left| x \right|+C \\ \end{align}


where \displaystyle C is an arbitrary constant.

NOTE: observe that \displaystyle \frac{1}{x} has a singularity at \displaystyle x=0, so the answers above are only primitive functions over intervals that do not contain \displaystyle x=0.