Lösung 2.1:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:3c moved to Solution 2.1:3c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we multiply the factors in the integrand together and use the power laws,
-
<center> [[Image:2_1_3c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& \int{e^{2x}}\left( e^{x}+1 \right)\,dx=\int{\left( e^{2x}e^{x}+e^{2x} \right)}\,dx \\
 +
& =\int{\left( e^{2x+x}+e^{2x} \right)}\,dx=\int{\left( e^{3x}+e^{2x} \right)}\,dx \\
 +
\end{align}</math>
 +
 
 +
we obtain a standard integral with two terms of the type
 +
<math>e^{ax}</math>, where
 +
<math>a</math>
 +
is a constant. The indefinite integral is therefore
 +
 
 +
 
 +
<math>\int{\left( e^{3x}+e^{2x} \right)}\,dx=\frac{e^{3x}}{3}+\frac{e^{2x}}{2}+C</math>
 +
 
 +
where
 +
<math>C</math>
 +
is an arbitrary constant.

Version vom 13:48, 17. Okt. 2008

If we multiply the factors in the integrand together and use the power laws,


\displaystyle \begin{align} & \int{e^{2x}}\left( e^{x}+1 \right)\,dx=\int{\left( e^{2x}e^{x}+e^{2x} \right)}\,dx \\ & =\int{\left( e^{2x+x}+e^{2x} \right)}\,dx=\int{\left( e^{3x}+e^{2x} \right)}\,dx \\ \end{align}

we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore


\displaystyle \int{\left( e^{3x}+e^{2x} \right)}\,dx=\frac{e^{3x}}{3}+\frac{e^{2x}}{2}+C

where \displaystyle C is an arbitrary constant.