Lösung 2.1:3b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.1:3b moved to Solution 2.1:3b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles, |
- | < | + | |
- | {{ | + | |
+ | <math>\int{2\sin x\cos x}\,dx=\int{\sin 2x}\,dx</math> | ||
+ | |||
+ | |||
+ | we obtain a standard integral where we can write down the primitive functions directly: | ||
+ | |||
+ | |||
+ | <math>\int{\sin 2x}\,dx=-\frac{\cos 2x}{2}+C</math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>C</math> | ||
+ | is an arbitrary constant. |
Version vom 13:41, 17. Okt. 2008
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
\displaystyle \int{2\sin x\cos x}\,dx=\int{\sin 2x}\,dx
we obtain a standard integral where we can write down the primitive functions directly:
\displaystyle \int{\sin 2x}\,dx=-\frac{\cos 2x}{2}+C
where
\displaystyle C
is an arbitrary constant.