Lösung 2.1:3b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.1:3b moved to Solution 2.1:3b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles, |
| - | < | + | |
| - | {{ | + | |
| + | <math>\int{2\sin x\cos x}\,dx=\int{\sin 2x}\,dx</math> | ||
| + | |||
| + | |||
| + | we obtain a standard integral where we can write down the primitive functions directly: | ||
| + | |||
| + | |||
| + | <math>\int{\sin 2x}\,dx=-\frac{\cos 2x}{2}+C</math> | ||
| + | |||
| + | |||
| + | where | ||
| + | <math>C</math> | ||
| + | is an arbitrary constant. | ||
Version vom 13:41, 17. Okt. 2008
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
\displaystyle \int{2\sin x\cos x}\,dx=\int{\sin 2x}\,dx
we obtain a standard integral where we can write down the primitive functions directly:
\displaystyle \int{\sin 2x}\,dx=-\frac{\cos 2x}{2}+C
where
\displaystyle C
is an arbitrary constant.
