Lösung 2.1:3b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:3b moved to Solution 2.1:3b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
-
<center> [[Image:2_1_3b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\int{2\sin x\cos x}\,dx=\int{\sin 2x}\,dx</math>
 +
 
 +
 
 +
we obtain a standard integral where we can write down the primitive functions directly:
 +
 
 +
 
 +
<math>\int{\sin 2x}\,dx=-\frac{\cos 2x}{2}+C</math>
 +
 
 +
 
 +
where
 +
<math>C</math>
 +
is an arbitrary constant.

Version vom 13:41, 17. Okt. 2008

As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,


\displaystyle \int{2\sin x\cos x}\,dx=\int{\sin 2x}\,dx


we obtain a standard integral where we can write down the primitive functions directly:


\displaystyle \int{\sin 2x}\,dx=-\frac{\cos 2x}{2}+C


where \displaystyle C is an arbitrary constant.