Lösung 2.1:1d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:1d moved to Solution 2.1:1d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The modulus function,
-
<center> [[Image:2_1_1d-1(2).gif]] </center>
+
<math>\left| x \right|</math>, strips
-
{{NAVCONTENT_STOP}}
+
<math>x</math>
-
{{NAVCONTENT_START}}
+
of its sign, e.g.
-
<center> [[Image:2_1_1d-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\left| -5 \right|=5</math>,
 +
<math>\left| 3 \right|=3</math>
 +
and
 +
<math>\left| -\pi \right|=\pi </math>
 +
 
 +
 
 +
For positive values of
 +
<math>x</math>, the modulus function has no effect, since
 +
<math>\left| x \right|=x</math>, but for negative
 +
<math>x</math>
 +
the modulus function changes the sign of
 +
<math>x</math>, i.e.
 +
<math>\left| -x \right|=x</math>
 +
(remember that
 +
<math>x</math>
 +
is negative and therefore
 +
<math>-x</math>
 +
is positive).
 +
 
 +
If we draw a graph of
 +
<math>y=\left| x \right|</math>
 +
it will consist of two parts. For
 +
<math>x\ge 0</math>
 +
we have
 +
<math>y=x</math>, and for
 +
<math>x\le 0</math>
 +
we have
 +
<math>y=-x</math>
 +
 
 +
 
 +
 
[[Image:2_1_1_d1.gif|center]]
[[Image:2_1_1_d1.gif|center]]
 +
 +
 +
The value of the integral is the area of the region under the graph
 +
<math>y=\left| x \right|</math>
 +
and between
 +
<math>x=-1</math>
 +
and
 +
<math>x=2</math>.
 +
 +
[[Image:2_1_1_d2.gif|center]]
[[Image:2_1_1_d2.gif|center]]
 +
 +
 +
This region consists of two triangles and we therefore obtain
 +
 +
<math>\int\limits_{-1}^{2}{\left| x \right|}\,dx=\frac{1}{2}\centerdot 1\centerdot 1+\frac{1}{2}\centerdot 2\centerdot 2=\frac{5}{2}</math>

Version vom 12:24, 17. Okt. 2008

The modulus function, \displaystyle \left| x \right|, strips \displaystyle x of its sign, e.g.


\displaystyle \left| -5 \right|=5, \displaystyle \left| 3 \right|=3 and \displaystyle \left| -\pi \right|=\pi


For positive values of \displaystyle x, the modulus function has no effect, since \displaystyle \left| x \right|=x, but for negative \displaystyle x the modulus function changes the sign of \displaystyle x, i.e. \displaystyle \left| -x \right|=x (remember that \displaystyle x is negative and therefore \displaystyle -x is positive).

If we draw a graph of \displaystyle y=\left| x \right| it will consist of two parts. For \displaystyle x\ge 0 we have \displaystyle y=x, and for \displaystyle x\le 0 we have \displaystyle y=-x




The value of the integral is the area of the region under the graph \displaystyle y=\left| x \right| and between \displaystyle x=-1 and \displaystyle x=2.



This region consists of two triangles and we therefore obtain

\displaystyle \int\limits_{-1}^{2}{\left| x \right|}\,dx=\frac{1}{2}\centerdot 1\centerdot 1+\frac{1}{2}\centerdot 2\centerdot 2=\frac{5}{2}