Lösung 1.2:3e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:3e moved to Solution 1.2:3e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
At first sight, the expression looks like “
-
<center> [[Image:1_2_3e.gif]] </center>
+
<math>e</math>
-
{{NAVCONTENT_STOP}}
+
raised to something” and therefore we differentiate using the chain rule:
 +
 
 +
 
 +
<math>\frac{d}{dx}e^{\left\{ \left. \sin x^{2} \right\} \right.}=e^{\left\{ \left. \sin x^{2} \right\} \right.}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }</math>
 +
 
 +
 
 +
Then, we differentiate “sine of something”:
 +
 
 +
 
 +
<math>\begin{align}
 +
& e^{\sin x^{2}}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }=e^{\sin x^{2}}\centerdot \cos \left\{ \left. x^{2} \right\} \right.\centerdot \left( \left\{ \left. x^{2} \right\} \right. \right)^{\prime } \\
 +
& =e^{\sin x^{2}}\centerdot \cos x^{2}\centerdot 2x \\
 +
\end{align}</math>

Version vom 13:27, 12. Okt. 2008

At first sight, the expression looks like “ \displaystyle e raised to something” and therefore we differentiate using the chain rule:


\displaystyle \frac{d}{dx}e^{\left\{ \left. \sin x^{2} \right\} \right.}=e^{\left\{ \left. \sin x^{2} \right\} \right.}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }


Then, we differentiate “sine of something”:


\displaystyle \begin{align} & e^{\sin x^{2}}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }=e^{\sin x^{2}}\centerdot \cos \left\{ \left. x^{2} \right\} \right.\centerdot \left( \left\{ \left. x^{2} \right\} \right. \right)^{\prime } \\ & =e^{\sin x^{2}}\centerdot \cos x^{2}\centerdot 2x \\ \end{align}