Lösung 1.2:3e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 1.2:3e moved to Solution 1.2:3e: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | At first sight, the expression looks like “ |
- | < | + | <math>e</math> |
- | {{ | + | raised to something” and therefore we differentiate using the chain rule: |
+ | |||
+ | |||
+ | <math>\frac{d}{dx}e^{\left\{ \left. \sin x^{2} \right\} \right.}=e^{\left\{ \left. \sin x^{2} \right\} \right.}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }</math> | ||
+ | |||
+ | |||
+ | Then, we differentiate “sine of something”: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & e^{\sin x^{2}}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }=e^{\sin x^{2}}\centerdot \cos \left\{ \left. x^{2} \right\} \right.\centerdot \left( \left\{ \left. x^{2} \right\} \right. \right)^{\prime } \\ | ||
+ | & =e^{\sin x^{2}}\centerdot \cos x^{2}\centerdot 2x \\ | ||
+ | \end{align}</math> |
Version vom 13:27, 12. Okt. 2008
At first sight, the expression looks like “ \displaystyle e raised to something” and therefore we differentiate using the chain rule:
\displaystyle \frac{d}{dx}e^{\left\{ \left. \sin x^{2} \right\} \right.}=e^{\left\{ \left. \sin x^{2} \right\} \right.}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }
Then, we differentiate “sine of something”:
\displaystyle \begin{align}
& e^{\sin x^{2}}\centerdot \left( \left\{ \left. \sin x^{2} \right\} \right. \right)^{\prime }=e^{\sin x^{2}}\centerdot \cos \left\{ \left. x^{2} \right\} \right.\centerdot \left( \left\{ \left. x^{2} \right\} \right. \right)^{\prime } \\
& =e^{\sin x^{2}}\centerdot \cos x^{2}\centerdot 2x \\
\end{align}